主要农作物历年收成信息系统--基于vb和SqlServer开发。
包含文档和代码
2025/9/3 21:39:21 4.23MB 农作物 历年收成 信息系统
1

【大功率近红外半导体激光对蝗蝻致死作用的研究】这篇研究主要探讨了大功率近红外半导体激光对蝗蝻(Oedaleus asiaticus B.Bienko Nymphae)的致死效应,旨在寻找一种环保且高效的蝗虫防控方法,以替代传统的化学药剂。
研究中使用的激光器具有2W的功率和808nm的波长,这种类型的激光属于近红外范围,其热效应可能会对生物组织产生显著影响。
研究者针对三龄及以前龄期和三龄期后的亚洲小车蝗蝻进行了分组实验。
实验中,激光束直接照射蝗蝻的头部,以不同的功率密度和照射时间进行测试,并在照射后立即、5小时后以及次日观察蝗蝻的存活状态。
通过对比实验组和对照组,发现激光照射的蝗蝻在照射部位出现热损伤,活动能力显著下降。
随着激光剂量的增加和照射时间的延长,蝗蝻的活动能力进一步降低,死亡率逐渐升高。
研究结果显示,近红外激光对蝗蝻头部的照射具有良好的致死效果,且年龄较小的蝗蝻对激光的敏感度更高,致死效果更佳。
这是因为较年轻的蝗蝻身体结构相对脆弱,对热能的耐受性较低。
这一发现对于早期防治蝗灾具有重要意义,可以在蝗虫发育初期就有效控制其数量,防止其进一步扩散和造成更大的农作物损失。
激光作为一种非接触式杀虫手段,具有精准、快速和环境污染小的优点。
然而,该研究并未深入探讨激光对其他生物的影响,以及在实际操作中的可行性、成本效益和技术难题。
未来的研究可能需要考虑这些问题,同时,还需要进一步优化激光参数,以达到最佳的杀虫效果,同时避免对生态环境的潜在影响。
此外,该研究得到了高校博士点基金的支持,表明了学术界对这一领域的重视。
作者姚明印和周强分别是博士研究生和教授,他们的研究方向包括光机电生物诱导技术,这为理解激光在生物防治中的应用提供了专业背景。
这项研究为利用大功率近红外半导体激光控制蝗虫提供了理论基础,但实际应用仍需结合生物学、环境科学和技术工程等多方面的考量。
通过深入研究和优化,激光技术有望成为一种有效的生物控制策略,为全球的蝗虫防治提供新的解决方案。
2025/6/19 18:22:09 99KB
1
精准农业-IOT-2018介绍:精确耕种被定义为特定地点的农田管理,利用现代技术来增加农作物的产量。
借助传感器和卫星图像,农民可以明智地使用其资源。
这样,整个农作物生产过程既有利可图又可持续。
这种智能农业管理的基础是AI和IOT。
例如,土壤传感器收集静态和动态数据,以分析和检查农作物的营养和水分需求。
借助IOT移动应用程序,农民可以了解其耕作实践中所使用和节约的水。
此外,智能灌溉解决方案无需农户亲自到田间就可以为农作物供食。
同样,机器学习分析和算法通过分析作物的需水量也能够准确检测和控制害虫。
所有这些技术共同构成了精准农业的核心。
这些决定因素助长了作物的生产周期,从而使农民的投资回报率最大化。
项目提交给SmartIndiaHackathon的项目工作由BNest2018组织:我们参加了Hackathon,我们成功进入了印度各地的前20名团队。
农业为印
2024/12/19 9:35:34 6.17MB PHP
1
数据集在IT行业中,特别是在机器学习和计算机视觉领域,扮演着至关重要的角色。
"各种病虫害的高清数据集"是一个专门针对农业病虫害识别的图像数据集,它包含了五个不同类别的高清图片,这些图片是jpg格式,非常适合用于训练和测试深度学习模型。
我们来详细了解一下数据集的概念。
数据集是模型训练的基础,它包含了一系列有标记的样本,这些样本用于训练算法学习特定任务的特征和模式。
在这个案例中,数据集中的每个样本都是一张病虫害的高清图片,可能包括农作物上的疾病症状或害虫。
这些图片经过分类,分别属于五个不同的类别,这意味着模型将需要学习区分这五种不同的病虫害类型。
在计算机视觉任务中,高清图片通常能提供更多的细节,有助于模型更准确地学习和理解图像特征。
jpg格式是一种常见的图像存储格式,它采用了有损压缩算法,能在保持图像质量的同时,减少文件大小,适合在网络传输和存储中使用。
对于这样的数据集,可以进行以下几种机器学习任务:1.图像分类:训练一个模型,输入一张病虫害图片,输出图片所属的类别。
例如,输入一张叶片有斑点的图片,模型应该能够判断出这是哪种病害。
2.目标检测:除了识别类别,还需要确定病虫害在图片中的位置,这要求模型能够定位并框出病虫害的具体区域。
3.实例分割:进一步细化目标检测,不仅指出病虫害的位置,还能精确到每个个体,这对于计算病虫害数量或者分析病害程度非常有用。
4.异常检测:训练模型识别健康的农作物图像,当出现病虫害时,模型会发出警报,帮助农民尽早发现并处理问题。
构建这样的模型通常涉及以下几个步骤:1.数据预处理:包括图片的缩放、归一化、增强(如翻转、旋转)等,目的是提高模型的泛化能力。
2.模型选择:可以使用经典的卷积神经网络(CNN),如AlexNet、VGG、ResNet等,或者预训练模型如ImageNet上的模型,再进行微调。
3.训练与验证:通过交叉验证确保模型不会过拟合,并调整超参数以优化性能。
4.测试与评估:在独立的测试集上评估模型的性能,常用的指标有准确率、召回率、F1分数等。
5.部署与应用:将训练好的模型部署到实际系统中,如智能手机APP或农田监控系统,实时识别并报告病虫害情况。
"各种病虫害的高清数据集"为开发精准的农业智能识别系统提供了基础,通过AI技术可以帮助农业实现智能化、精准化管理,提升农作物的产量和质量,对现代农业发展具有重要意义。
2024/11/22 10:52:17 840.11MB 数据集
1
目录第1章线性神经网络的工程应用1.1系统辨识的MATLAB实现1.2自适应系统辨识的MATLAB实现1.3线性系统预测的MATLAB实现1.4线性神经网络用于消噪处理的MATLAB实现第2章神经网络预测的实例分析2.1地震预报的MATLAB实现2.1.1概述2.1.2地震预报的MATLAB实例分析2.2交通运输能力预测的MATLAB实现2.2.1概述2.2.2交通运输能力预测的MATLAB实例分析2.3农作物虫情预测的MATLAB实现2.3.1概述2.3.2农作物虫情预测的MATLAB实例分析2.4基于概率神经网络的故障诊断2.4.1概述2.4.2基于PNN的故障诊断实例分析2.5基于BP网络和Elman网络的齿轮箱故障诊断2.5.1概述2.5.2基于BP网络的齿轮箱故障诊断实例分析2.5.3基于Elman网络的齿轮箱故障诊断实例分析2.6基于RBF网络的船用柴油机故障诊断2.6.1概述2.6.2基于RBF网络的船用柴油机故障诊断实例分析第3章BP网络算法分析与工程应用3.1数值优化的BP网络训练算法3.1.1拟牛顿法3.1.2共轭梯度法3.1.3LevenbergMarquardt法3.2BP网络的工程应用3.2.1BP网络在分类中的应用3.2.2函数逼近3.2.3BP网络用于胆固醇含量的估计3.2.4模式识别第4章神经网络算法分析与实现4.1Elman神经网络4.1.1Elman神经网络结构4.1.2Elman神经网络的训练4.1.3Elman神经网络的MATLAB实现4.2Boltzmann机网络4.2.1BM网络结构4.2.2BM网络的规则4.2.3用BM网络解TSP4.2.4BM网络的MATLAB实现4.3BSB模型4.3.1BSB神经模型概述4.3.2BSB的MATLAB实现第5章预测控制算法分析与实现5.1系统辨识5.2自校正控制5.2.1单步输出预测5.2.2最小方差控制5.2.3最小方差间接自校正控制5.2.4最小方差直接自校正控制5.3自适应控制5.3.1MIT自适应律5.3.2MIT归一化算法第6章改进的广义预测控制算法分析与实现6.1预测控制6.1.1基于CARIMA模型的JGPC6.1.2基于CARMA模型的JGPC6.2神经网络预测控制的MATLAB实现第7章SOFM网络算法分析与应用7.1SOFM网络的生物学基础7.2SOFM网络的拓扑结构7.3SOFM网络学习算法7.4SOFM网络的训练过程7.5SOFM网络的MATLAB实现7.6SOFM网络在实际工程中的应用7.6.1SOFM网络在人口分类中的应用7.6.2SOFM网络在土壤分类中的应用第8章几种网络算法分析与应用8.1竞争型神经网络的概念与原理8.1.1竞争型神经网络的概念8.1.2竞争型神经网络的原理8.2几种联想学习规则8.2.1内星学习规则8.2.2外星学习规则8.2.3科荷伦学习规则第9章Hopfield神经网络算法分析与实现9.1离散Hopfield神经网络9.1.1网络的结构与工作方式9.1.2吸引子与能量函数9.1.3网络的权值设计9.2连续Hopfield神经网络9.3联想记忆9.3.1联想记忆网络9.3.2联想记忆网络的改进9.4Hopfield神经网络的MATLAB实现第10章学习向量量化与对向传播网络算法分析与实现10.1学习向量量化网络10.1.1LVQ网络模型10.1.2LVQ网络学习算法10.1.3LVQ网络学习的MATLAB实现10.2对向传播网络10.2.1对向传播网络概述10.2.2CPN网络学习及规则10.2.3对向传播网络的实际应用第11章NARMAL2控制算法分析与实现11.1反馈线性化控制系统原理11.2反馈线性控制的MATLAB实现11.3NARMAL2控制器原理及实例分析11.3.1NARMAL2控制器原理11.3.2NARMAL2控制器实例分析第12章神经网络函数及其导函数12.1神经网络的学习函数12.2神经网络的输入函数及其导函数12.3神经网络的性能函数及其导函数12.3.1性能函数12.3.2性能函数的导函数第13章Simulink神经网络设计13.1Simulink交互式仿真集成环境13.1.1Simulink模型创建1
2024/3/1 2:25:47 10.12MB MATLAB R2016a 神经网络 案例分析
1
智能农业控制系统使用大量的传感器节点构成监控网络,对主要的农业生产影响因素进行信息采集,经Zigbee无线网络汇聚后,通过网关传输到计算机中。
计算机进行数据的分析和处理,以图表呈现给用户,用户可以根据生产需要,控制喷灌、通风、遮阳等物联网设备,或者设置这些设备的自动调控条件,从而保证农作物有一个良好的适宜的生长环境,达到增产增收、提高品质的目的。
-
2023/8/7 8:37:21 2.8MB 智能 农业 控制 系统
1
来自中科院资源平台的《中国植被类型》栅格数据集,本图集是我国植被生态学工作者40多年来继《中国植被》等专著出版后又一项总结性成果,是国家自然资源和自然条件的基本图件。
它详细反映了我国11个植被类型组、54个植被型的796个群系和亚群系植被单位的分布状况、水平地带性和垂直地带性分布规律,同时反映了我国2000多个植物优势种、主要农作物和经济作物的实际分布状况及优势种与土壤和地面地质的密切关系。
由于本图集属于现实植被图图种,故反映出我国植被近斯的质量状况。
2023/7/1 9:01:36 1.93MB china asc 植被
1
使用STM32单片机实现各传感器参数患上到,并经由抑制器设定阈值抑制,实现闭环抑制体系:一、经由泥土湿度返回的湿度数据,抑制器举行内部阈值的分辨,搭建驱动电路,驱动水泵加水;
二、经由烟雾传感器患上到到的烟雾浓度数据,同样抑制器举行内部阈值的分辨,使用蜂鸣器举行报警。
并且使用WiFi模块以及GPRS模块,行使WiFi模块透传的方式举行数据的上传下发,并且使用GPRS模块举行火灾报警短信发送。
1
中国各省次要农作物农事历,各省次要农作物的物候期。
2019/10/8 8:29:40 64KB wuhouqi
1
温室控制技术,本课题运用STC89C52单片机、DS-18B20数字温度传感器、继电器和M4QA045电动机、ULN-2003A集成芯片、湿敏电阻,以及四位八段数码管等元器件,设计了温湿度报警电路、M4QA045电机驱动电路、电热器驱动电路,实现了温室大棚中温度和湿度的控制和报警系统,处理了温室大棚人工控制测试的温度及湿度误差大,且费时费力、效率低等问题。
该系统运行可靠,成本低。
系统通过对温室内的温度与湿度参量的采集,并根据获得参数实现对温度和湿度的自动调节,达到了温室大棚自动控制的目的。
促进了农作物的生长,从而提高温室大棚的产量,带来很好的经济效益和社会效益。
2020/4/14 10:44:40 461KB 温室控制
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡