传染病流行过程的研究与其他学科有所不同,不能通过在人群中实验的方式获得科学数据。
事实上,在人群中作传染病实验是极不人道的。
所以有关传染病的数据、资料只能从已有的传染病流行的报告中获取。
这些数据往往不够全面,难以根据这些数据来准确地确定某些参数,只能大概估计其范围。
基于上述原因,利用数学建模与计算机仿真便成为研究传染病流行过程的有效途径之一
2025/8/10 22:35:02 90KB 传染病模型 数学建模 课程设计
1
在图像恢复技术中,点扩展函数(PSF)是影响图像恢复结果的关键因素,所以常常利用先验知识和后验判断方法估计PSF函数来恢复图像。
2025/8/6 19:24:25 411KB psf
1
参数化时频分析是一种在信号处理领域广泛应用的技术,特别是在处理非平稳信号时,它能提供一个更为精确且灵活的分析框架。
MATLAB作为一种强大的数学计算和数据可视化软件,是进行时频分析的理想工具。
本资源提供了MATLAB实现的参数化时频分析代码,可以帮助用户深入理解和应用这一技术。
我们要理解什么是时频分析。
传统的频谱分析,如傅立叶变换,只能对静态信号进行分析,即假设信号在整个时间范围内是恒定的。
然而,在实际工程和科学问题中,许多信号的频率成分会随时间变化,这种信号被称为非平稳信号。
为了解决这个问题,时频分析应运而生,它允许我们同时观察信号在时间和频率域上的变化。
参数化时频分析是时频分析的一个分支,它通过建立特定的模型来近似信号的时频分布。
这种模型通常包括一些参数,可以通过优化这些参数来获得最佳的时频表示。
这种方法的优点在于可以提供更精确的时频分辨率,同时减少时频分析中的“时间-频率分辨率权衡”问题。
在MATLAB中,实现参数化时频分析通常涉及以下几个步骤:1.**数据预处理**:需要对原始信号进行适当的预处理,例如去除噪声、滤波或者归一化,以提高后续分析的准确性。
2.**选择时频分布模型**:常见的参数化时频分布模型有短时傅立叶变换(STFT)、小波变换、chirplet变换、模态分解等。
选择哪种模型取决于具体的应用场景和信号特性。
3.**参数估计**:对选定的模型进行参数估计,通常采用最大似然法或最小二乘法。
这一步涉及到对每个时间窗口内的信号参数进行优化,以得到最匹配信号的时频分布。
4.**重构与可视化**:根据估计的参数重构信号的时频表示,并使用MATLAB的图像绘制函数(如`imagesc`)进行可视化,以便直观地查看信号的时频特征。
5.**结果解释与应用**:分析重构后的时频图,识别信号的关键特征,如突变点、周期性变化等,然后将其应用于故障诊断、信号分离、通信信号解调等多种任务。
在提供的`PTFR_toolboxs`压缩包中,可能包含了实现上述步骤的各种函数和脚本,如用于预处理的滤波函数、参数化模型的计算函数、以及用于绘图和结果解析的辅助工具。
`README.docx`文档应该详细介绍了工具箱的使用方法、示例以及可能的注意事项。
通过学习和使用这个MATLAB代码库,你可以进一步提升在参数化时频分析方面的技能,更好地处理和理解非平稳信号。
无论是学术研究还是工程实践,这种能力都是非常有价值的。
记得在使用过程中仔细阅读文档,理解每一步的作用,以便于将这些知识应用到自己的项目中。
2025/8/5 16:54:38 29KB 时频分析
1
该资源包含多种时延估计的方法,涉及时域、频域、自适应方法等,并利用多个分布的传感器数据,采用TDOA的方法估计出关注目标的位置。
资源内包含matlab源代码、GUI代码、传感器数据等。
2025/7/31 22:35:57 17.06MB TDOA Matlab localization
1
本书从相控阵雷达和滤波理论的一般原理出发,系统论述了相控阵雷达数据处理的理论与方法,并涉及了这一领域的崭新研究成果。
全书共7章,主要内容包括相控阵雷达技术及数据处理概述、线性系统的最优估计、非线性滤波、机动目标数据处理专题研究、复杂环境目标跟踪的数据处理、相控阵雷达工作方式调度的专题研究,以及相控阵雷达数据处理的仿真技术。
精选的附录A、B、C的内容是雷达数据处理必备的理论基础,也便于读者查找有关资料。
2025/7/24 6:31:52 4.88MB 相控阵 雷达 数据处理
1
FFT在高动态扩频信号捕获中的应用可用于载波跟踪伪码捕获是一种很好的方法
2025/7/23 19:57:09 289KB 高动态 捕获 FFT
1
授课对象:这是一门数学课程,适合有志于转往大数据分析领域的非数学专业人士(例如IT人,业务人员等)补强数学基础,以更好地学习更高级的数据分析,数据挖掘,机器学习课程收获预期:可以大幅度提高学员的数学基础,使其学习其它大数据分析课程时觉得更加简单,得心应手课程内容:第1课面向小白的统计学:描述性统计(均值,中位数,众数,方差,标准差,与常见的统计图表)第2课赌博设计:概率的基本概念,古典概型第3课每人脑袋里有个贝叶斯:条件概率与贝叶斯公式,独立性第4课啊!微积分:随机变量及其分布(二项分布,均匀分布,正态分布)&J.e3P:w6X2^;K*W1U&X第5课万事皆由分布掌握:多维随机变量及其分布4o7|%v%n9\"m4R)|第5课砖家的统计学:随机变量的期望,方差与协方差"s4@+n.v"I:V)`-u第6课上帝之手,统计学的哲学基础:大数定律、中心极限定理与抽样分布+j:W+V/n1_4Y)`/w+[第8课点数成金,从抽样推测规律之一:参数估计之点估计$v3^1V.H(t,G9b:U第9课点数成金,从抽样推测规律之二:参数估计之区间估计第10课对或错?告别拍脑袋决策:基于正态总体的假设检验第11课扔掉正态分布:秩和检验!s!G1w#i3P*]#e第12课预测未来的技术:回归分析,O%b!U)k4h#]$p第13课抓住表象背后那只手:方差分析第14课沿着时间轴前进,预测电子商务业绩:时间序列分析简介,X.n%b4~8PE9\+d第15课PageRank的背后:随机过程与马尔科夫链简介
2025/7/23 6:41:21 61B 大数据
1
周期图法实现功率谱估计,根据原理编写,不是直接调函数。
2025/7/22 10:36:14 2KB 周期图法
1
matlab程序代码,用来求取模糊运动图像运动长度与运动角度
2025/7/18 13:20:22 12KB 模糊运动图像
1
matlabAR模型参数谱估计,建立yule-walker方程,通过levinson-durbin递推法解方程。
本次实验通过调用matlab现有函数实现。
2025/7/15 11:45:43 438B AR模型
1
共 831 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡