里面包含近几年来厦大人工智能课程的期末试卷以及答案。
2024/12/21 5:08:09 1.09MB 厦门大学 人工智能 期末试卷 答案
1
强化学习是一种人工智能领域的学习方法,它让智能体通过与环境的交互来学习最优策略,以最大化长期奖励。
在这个“强化学习基础算法介绍+Pytorch代码”资料中,我们可以期待了解到强化学习的基本概念、核心算法以及如何用PyTorch实现这些算法。

2024/12/14 22:51:34
1
麻将胡牌算法以及AI算法,麻将AlphaGo,java代码,可直接运行
2024/12/11 22:55:20 36.41MB AI麻将 麻将Alph
1
爬虫学习,人工智能,深度学习,自然语言处理
2024/12/10 7:21:39 2KB 爬虫
1
这个工具包包含了开发k210人工智能套件的各种软件工具以及一个人脸识别的模型库
2024/12/4 22:33:23 158MB k210 人脸识别 软件工具
1
人工智能课程总结转眼之间,研一的上半学期就要结束了,陪伴了自己一学期的人工智能课也在今天结束了最后的考试。
回顾这半个学期来学习人工智能的感受,确实还是有点可说的东西。
我记得自己第一次听AI这个名字是上大二时一个北航软件学院朋友提起的,他特别想去微软做AI方面的研究,然后他热情的向我介绍了这个领域是多么多么好,当时的自己完全没有印象,只觉得可能和机器人有关,AI的目的就是做出和人类一模一样的机器人。
现在看来自己当初的想法是多么的幼稚可笑。
等到了大三的时候,软件学院正好开设了这门课,我便抱着好奇的心态选了这门课,无奈当时授课老师胡晶晶讲解极其乏味,也没有教材,每节课上课就照着PPT念,完全成了可有可无的课程,在这门课上我学到的唯一的知识点就是可以用遗传算法来求解走迷宫问题,因为那次是老师用一个程序在课堂上进行演示的。
当时觉得挺有意思,可惜自己并没有做进一步的学习,结果第一次上人工智能课就这么草草收场。
如今上了研究生,再次碰到了这门课,我又一次选了,因为我觉得计算机学院的老师讲课和软件学院的老师应该不一样,事实证明我的想法是正确的。
在这门课上我学到了很多的知识,了解到了人工智能原来包含这么多内容,根本不是一个简单的机器人所能概括的,计算机图形学,机器学习,模式识别等这些看起来似乎不相关的东西在都被包含在其中。
尽管上课时间有限而且这门课也比较基础,但老师的讲课却毫不含糊。
说实话,在老师快讲完第三章之前我还一直坐在靠后的位置看不清PPT,后来觉得还是要认真听讲,于是每次都是占前两排的座位,当然这种做法事后证明也是对的,看来有时候一念之差能改变很多。
针对这门课的内容没有什么要说的,个人觉得刘峡壁老师的个人魅力较强,能让学生喜欢听这门课,这一点和林永刚老师极其相似,而大学里面缺少的正是这样的老师。
当然,光听课是没用的,课后还需要进行做题,弄不懂的还需要和同学进行讨论,这在做作业时得到了体现。
我觉得人工智能最重要的不是让我们知道这些知识,而是要让我们掌握分析问题,解决问题的方法,正如刘峡壁老师所说“我给你们提供了各种武器,关键看你们遇到问题会不会拿出来用”,而这也是做研究所必须的。
同时,我也在其中体会到了发散思维不局限于某一领域的奇妙之处,例如遗传算法,蚁群算法就是来自生物界,这种跨学科之间的联系已经成为当下的潮流,知识本来就不应该有局限性,联系无处不在。
就写到这里吧,如今我知道了AI无处不在,而且我在以后的学习阶段中会不断接触到AI。
记得之前看过很多AI题材的电影,比如《我,机器人》,《黑客帝国》等等,真希望自己能在有生之年看到这些电影中所展现出来的AI成为现实,人类也一定会因为AI而不断进步。
2024/11/30 8:53:29 114.46MB 人工智能 AI 课件 作业题
1
数字图像处理是研究如何通过计算机技术处理和分析图像的学科,主要应用于图像增强、恢复、分割、特征提取和识别等任务。
数字图像处理的第三版由RafaelC.Gonzalez和RichardE.Woods编写,二人来自田纳西大学和MedDataInteractive公司。
这本书对数字图像处理领域进行了全面的介绍,涵盖了数字图像处理的历史背景、基本概念、技术和算法。
冈萨雷斯的这本书被认为是该领域的重要参考资料。
数字图像处理可以应用于医疗成像、遥感、安全监控、图像压缩、机器视觉等多个领域。
例如,在医疗成像中,数字图像处理可以帮助医生更清晰地观察患者身体组织的结构,从而提高诊断的准确性;
在遥感领域,通过处理和分析遥感图像可以获取地球表面的信息,用于天气预报、地理信息系统的建立等。
数字图像处理涉及的算法和工具主要包括图像的采集、处理、分析和理解等步骤。
图像采集是使用摄像头、扫描仪等设备将图像转换为计算机可以处理的数据形式;
图像处理通常包括图像的预处理(如去噪、对比度增强)、图像变换(如傅里叶变换、小波变换)和图像恢复等;
图像分析主要涉及到图像分割、特征提取、模式识别等内容;
图像理解则试图使计算机能够解释图像内容,达到类似于人类理解图像的水平。
数字图像处理的起源可以追溯到20世纪50年代末60年代初,当时人们开始使用计算机技术对图像进行处理。
早期的数字图像处理主要用于空间探索、卫星图像处理等领域,随着计算机技术的发展和图像处理理论的完善,数字图像处理逐渐扩展到生物医学、工业、安全等其他领域。
数字图像处理的一个重要分支是数字视频处理,其关注如何处理连续的图像序列,以实现视频压缩、视频增强、运动分析等功能。
视频处理技术在高清电视、网络视频、电影后期制作等行业有着广泛的应用。
数字图像处理是一个不断发展的领域,随着人工智能技术的发展,基于深度学习的图像处理技术成为当前的研究热点。
深度学习模型,尤其是卷积神经网络(CNN)在图像识别、分类、目标检测和图像分割等方面显示出了巨大的潜力。
总结来说,数字图像处理是通过计算机技术来处理图像数据,使之更适合人眼或机器分析的一门技术。
随着技术的进步和应用的拓展,它在多个行业中发挥着越来越重要的作用。
冈萨雷斯的《数字图像处理》作为该领域的经典教材,为学习和研究这一领域的专业人士提供了宝贵的资源和参考。
2024/11/18 17:16:43 19.14MB digital image processing
1
自动驾驶,人工智能,自动驾驶与人工智能研究报告(2018年)
2024/11/18 11:37:04 2.64MB 自动驾驶 研究报告 人工智能
1
SLAM技术是目前机器人、自动驾驶、增强现实等领域的关键技术之一,是智能移动平台感知周围环境的基础技术。
本文介绍了基于视觉传感器(单目、双目、RGB-D等相机)的SLAM技术的原理和研究现状,包括基于稀疏特征的SLAM、稠密/半稠密SLAM、语义SLAM和基于深度学习的SLAM。
然而,现有的系统与方法鲁棒性并不高,随着人工智能技术的发展,深度学习与传统的基于几何模型的方法相结合的趋势正在形成,这将推动视觉SLAM技术朝着长时间大范围实时语义应用的方向前进。
视觉SLAM算法的现状1、基于稀疏性特征的SLAM2、稠密SLAM和半稠密SLAM3、语义SLAM4、基于深度学习的SLAM
2024/11/13 18:25:29 23.44MB 计算机视觉 SLAM
1
人工智能基于归结原理的推理系统.rar人工智能基于归结原理的推理系统.rar
1
共 484 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡