目录第1章计算机制图实验基础知识概述 11.1实验环境AutoCAD2002介绍 11.2基本操作技巧及简单二维图形绘制基础知识介绍 31.3图形编辑基础知识介绍 71.4图层及图形特性知识介绍 121.4.1图层 121.4.2图形特性 131.4.3特性匹配 141.4.4对象特性管理器 141.5显示控制与精确绘图方法介绍 141.5.1缩放显示 141.5.2平移显示 141.5.3视图管理 141.5.4重画 151.5.5重新生成 151.5.6了解AUTOCAD系统的当前状态 151.5.7查询图形对象的几何信息 151.5.8查询本作业的全部图形对象的几何信息 151.5.9查询点的坐标 151.5.10查询两点的距离 151.5.11了解圆、封闭的多义线或多个点所围成的面积 161.6精确绘图方法介绍 161.6.1栅格捕捉 161.6.2栅格显示 161.6.3正交方式 171.6.4对象捕捉 171.6.5以对话框方式设置绘图环境 171.6.6设置用户坐标系 181.6.7坐标系图标 191.7图形标注方法介绍 191.7.1插入文本与贴图概述 191.7.2绘制单行文本 191.7.3绘制多行文本 201.7.4定义字样 201.7.5编辑文本的内容 211.7.6尺寸标注的基本概念 211.7.7长度型尺寸标注 221.7.8标注对齐型尺寸 221.7.9标注直径型尺寸 231.7.10标注半径型尺寸 231.7.11标注角度型尺寸 231.7.12尺寸变量 231.7.13尺寸式样 241.7.14尺寸编辑和修改 251.7.15图案填充 261.8装配图绘制介绍 271.8.1图块 271.8.2外部引用 291.8.3绘制装配图 311.9非图形信息的生成与管理知识介绍 321.9.1CAD提供非图形信息的意义 321.9.2属性 331.9.3访问外部数据库 351.10三维实体外型简介 421.10.1概述 421.10.2生成简单形体 431.10.3形体的布尔运算与剖切 451.10.4形体编辑 461.10.5形体显示和查询 471.10.6利用三维形体获取二维视图 491.11VisualLISP二次开发技术简介 511.12Prote2004 521.12.1Prote简介 521.13MicorsoftOfficeVisio简介 521.13.1Visio简介 521.13.2MicrosoftOfficeVisio环境 521.13.3Visio中创建图表 531.13.4移动形状和调整形状的大小 541.13.5添加文本 55第2章实验要求 602.1实验过程要求 602.2实验报告要求 602.2.1实验报告书写格式 602.2.2实验报告范例 612.3实验成绩评价 612.3.1实验成绩评价结构及比例 612.3.2考核方式 622.3.3评价标准及考核方式细则的确定 62第3章实验内容 633.1实验1熟悉AutoCAD绘图环境 633.1.1实验类型 633.1.2实验目的 633.1.4背景知识 633.1.5实验内容 633.1.6实验分析与思考 683.2实验2 简单二维图形绘图 693.2.1实验类型 693.2.2实验目的 693.2.3实验背景 693.2.4实验内容 703.2.5实验分析与思考 723.3实验3图形编辑 733.1实验类型 733.2实验目的 733.3实验背景 733.4实验内容 733.5实验步骤 743.6实验分析与思考 773.4实验4 图层、图形显示控制及精确绘图 783.4.1实验类型 783.4.2实验目的 783.4.3相关背景 783.4.4实验内容 803.4.5实验分析与思考 803.5实验5图形标注和图案填充实验 823.5.1实验类型 823.5.2实验目的 823.5.3实验背景 823.5.4实验内容 823.5.5思考与分析 873.6实验6图块及装配图绘制 883.6.1实验类型 883.6.2实验目的 883.6.3实验背景 883.6.4实验内容 883.6.5实验分析与思考 923.7实验7
2022/9/4 12:04:46 4.65MB 计算机制图 DXP CAD Visio
1
Fuzzysimulink有关模糊PID问题概述-自适应模糊PID.rar最近很多人问我关于模糊PID的问题,我就把模糊PID的问题综合了一下,希望对大家有所帮助。
一、模糊PID就是指自适应模糊PID吗?不是,通常模糊控制和PID控制结合的方式有以下几种:1、大误差范围内采用模糊控制,小误差范围内转换成PID控制的模糊PID开关切换控制。
2、PID控制与模糊控制并联而成的混合型模糊PID控制。
3、利用模糊控制器在线整定PID控制器参数的自适应模糊PID控制。
一般用1和3比较多,MATLAB自带的水箱液位控制tank采用的就是开关切换控制。
由于自适应模糊PID控制效果更加良好,而且大多数人选用自适应模糊PID控制器,所以在这里主要指自适应模糊PID控制器。
二、自适应模糊PID的概念根据PID控制器的三个参数与偏差e和偏差的变化ec之间的模糊关系,在运行时不断检测e及ec,通过事先确定的关系,利用模糊推理的方法,在线修改PID控制器的三个参数,让PID参数可自整定。
就我的理解而言,它最终还是一个PID控制器,但是因为参数可自动调整的缘故,所以也能解决不少一般的非线性问题,但是假如系统的非线性、不确定性很严重时,那模糊PID的控制效果就会不理想啦。
三、模糊PID控制规则是怎么定的?这个控制规则当然很重要,一般经验:当e较大时,为使系统具有较好的跟踪功能,应取较大的Kp与较小的Kd,同时为避免系统响应出现较大的超调,应对积分作用加以限制,通常取Ki=0。
当e处于中等大小时,为使系统响应具有较小的超调,Kp应取得小些。
在这种情况下,Kd的取值对系统响应的影响较大,Ki的取值要适当。
当e较小时,为使系统具有较好的稳定功能,Kp与Ki均应取得大些,同时为避免系统在设定值附近出现振荡,Kd值的选择根据|ec|值较大时,Kd取较小值,通常Kd为中等大小。
另外主要还得根据系统本身的特性和你自己的经验来整定,当然你先得弄明白PID三个参数Kp,Ki,Kd各自的作用,尤其对于你控制的这个系统。
四、量化因子Ke,Kec,Ku该如何确定?有个一般的公式:Ke=n/e,Kec=m/ec,Ku=u/l。
n,m,l分别为Ke,Kec,Ku的量化等级,一般可取6或7。
e,ec,u分别为误差,误差变化率,控制输出的论域。
不过通过我实际的调试,有时候这些公式并不好使。
所以我一般都采用凑试法,根据你的经验,先确定Ku,这个直接关系着你的输出是发散的还是收敛的。
再确定Ke,这个直接关系着输出的稳态误差响应。
最后确定Kec,前面两个参数确定好了,这个应该也不会难了。
五、在仿真的时候会出现刚开始仿真的时候时间进度很慢,从e-10次方等等开始,该怎么解决?这时候肯定会有许多人跳出来说是步长的问题,等你改完步长,能运行了,一看结果,惨不忍睹!我只能说这个情况有可能是你的参数有错误,但如果各项参数是正确的前提下,你可以在方框图里面加饱和输出模块或者改变阶跃信号的sampletime,让不从0开始或者加个延迟模块或者加零阶保持器看看……六、仿真到一半的时候仿真不动了是什么原因?仿真图形很有可能发散了,加个零阶保持器,饱和输出模块看看效果。
改变Ke,Kec,Ku的参数。
七、仿真图形怎么反了?把Ku里面的参数改变一下符号,比如说从正变为负。
模糊PID的话改变Kp的就可以。
八、还有人问我为什么有的自适应模糊PID里有相加的模块而有的没有?相加的是与PID的初值相加。
最后出来的各项参数Kp=△KpKp0,Ki=△KiKi0,Kd=△KdKd0。
Kp0,Ki0,Kd0分别为PID的初值。
有的系统并没有设定PID的初值。
九、我照着论文搭建的,什么都是正确的,为什么最后就是结果不对?你修改下参数或者重新搭建一遍。
哪一点出了点小问题,都有可能导致失败。
……大家还有什么问题就在帖子后面留言哈,如果模型实在是搭建不成功的话可以给我看看,大家有问题一起解决!附件里面是两个自适应模糊PID的程序,大家可以参考下!所含文件:Figure38.jpgsimulink有关模糊PID问题概述结构图:Figure39.jpgsimulink有关模糊PID问题概述Figure40.jpgsimulink有关模糊PID问题概述
2022/9/4 9:33:16 17KB matlab
1
特征降维是模式识别中重要的一步,从图像中提取的原始特征往往维度较高,需求对其降维处理。
基于AdaBoost的特征降维是具有良好的特征选择能力,其对每一维特征训练若分离器,根据分类效果调整权重,并最终选择具有分类信息的特征组合。
2022/9/4 4:30:24 6KB AdaBoost
1
红色风格的资讯网站模板,下载后用户可根据自己所在单位情况来在后台调整结构和内容,结构规划紧凑美观,可适用于一般的信息网站或政府事业单位网站搭建
1
ISP烧录软件对于ISP编程进入不了编程模式的总结(弹出“ChipEnableProgramError“提示对话框)对于isp下载器,下载芯片失败一般有以下几种原因:1,连接接线错误。
2,ISP接口电路下载器接口电路电平冲突,这个是许多初学者极容易犯得错误3,芯片熔丝设置的有问题。
4,下载时下载速度太快,芯片时钟设置的太慢5,下载器坏了下面我以智峰软件的zf-007系列下载器为例说明处理办法。
1,不用说了,自行查找接线问题,是不是错了?是不是接触不好?尤其是自己焊接的万用板一定要小心了。
接线错误,极容易损坏下载器与目标板芯片。
2,电平冲突对于初学者可能有难度,这种情况甚至一些老手都会犯,见附后m16,m128图解分析。
3,熔丝设置错也是初学者容易犯的错误(有时,电源不稳时下载也容易出现芯片锁死现象—也提示我们对于电路电源很重要),处理办法见附图4,对于,zf-007系列下载器不用担心,他会自动降速调整为合适的下载速度的,如果自动不行也可手动强制低速写入,其他,如usbasp可能需要跳线到低速。
2022/9/4 3:29:46 16.82MB ISP 烧录软件
1
这个是从谷歌地球下载下来的深圳全部的建筑模型,已经逐一转换成了gltf格式。
并且逐一手动调整了实际位置,获取到经纬度。
上传附件为百度云盘下载地址和提取密码。
请大家放心下载。
2022/9/3 21:56:40 310B 建筑模型-3
1
自动绿自动保持GitHub提交状态常绿。
一天的约会会让你的女朋友远离。
原理使用GitHubActions的定时任务功能,每隔一段时间自动执行gitcommit,提交信息为“一天的提交会使您的女朋友远离”,灵感来自知乎问题下某匿名用户的回答:曾经保持了200多天全绿,但是冷落了女朋友,不断绿到现在。
使用点右上角使用此模板按钮复制本GitHub仓库,:warning:千万不要Fork,因为fork项目的动态并不会使你变绿:warning:修改为自己的GitHub的账号和昵称(任选)您可以通过修改来调整频率计划任务语法有5个分割,中间用空格分隔,每个细分代表一个时间单位。
┌─────────────分钟(0-59)│┌─────────────小时(0-23)││┌─────────────日(1-31)│││┌─────────────月
2022/9/3 19:12:00 3KB
1
一、软件简介FastStoneCapture是一款出色的屏幕捕捉(截图)软件,它集图像捕捉、浏览、编辑、视频录制等功能于一身,功能完善、使用方便,值得推荐!软件提供多种捕捉方式(如:活动窗口、窗口/对象、矩形区域、手绘区域、整个屏幕、滚动窗口等),还具备屏幕录像机、放大镜、颜色拾取、屏幕标尺等附加功能,支持快捷键操作。
软件提供多种方式处理捕捉到的图像(如:在编辑器打开;
存入剪贴板或文件;
发送到打印机、邮件、Word、Excel、Powerpoint、FTP);
支持自动保存捕捉内容,并可通过文件名称模板定制文件名;
可输出BMP、GIF、JPG、PNG、TIF、PDF等文件格式,且输出文件夹地位也可自行设定。
软件内置功能完善的图像编辑器,除提供缩放、旋转、剪切、格式转换、调整大小等基本功能外,还可向图像中加入标题、边框和水印、文本与线条、自定义图形等内容,并可调整图像颜色和进行多种特效处理;
可处理几乎所有的主流图片格式;
并可调用第三方软件进行编辑。
二、版本特色:本版本基于官方英文原版汉化,集成注册信息,并对设置进行了优化,具有更新及时、汉化彻底、使用方便等特点。
希望大家喜欢!
2022/9/3 6:59:10 2.46MB FastStone Capture7.7 简体中文 破解版
1
无需将视频文件转换为MP4即可在挪动设备中播放它们。
nPlayer使您无需文件转换即可播放各种视频格式和编解码器。
用指尖调整播放位置,移至上一个和下一个字幕位置,调整字幕的位置和字体大小,控制音量和亮度。
*功能-支持正式的DTS音频编解码器(DTSHD)-支持弹出播放-支持智能电视的视频播放-支持HDMI输出-支持视频文件:MP4,MOV,MKV,AVI,WMV,ASF,FLV,OGV,RMVB,TP等-支持音频文件:MP3,WAV,WMA,FLAC,APE等-支持字幕文件:SMI,SRT,SSA,IDX,SUB,LRC,SUP,MLP2等-支持图像文件:JPG,PNG,
2022/9/3 2:26:43 33.98MB nPlayer Pro
1
本文报道了太赫兹地区的一种多频带超材料(MM)吸收器的设计。
理论和模拟结果表明,该吸收器在1.69、2.76、3.41和5.06THz处具有四个明显而强的吸收点,这与某些爆炸性材料的“指纹”一致。
检索到的材料参数表明,可以将MM的阻抗调整为近似婚配自由空间的阻抗,以最小化吸收频率处的反射率,并且在吸收频率处存在大功率损耗。
功率损耗的分布表明,吸收器是出色的电磁波收集器:首先在特定的特定位置捕获并增强波,然后将其吸收。
这种多频带吸收器可用于爆炸物检测和材料表征。
2022/9/2 22:24:29 1.15MB multiband; terahertz; electromagnetic resonance;
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡