摘要 IABSTRACT II目录 IV1前言 11.1课题背景 11.1.1办公自动化概述 11.1.2中小企业办公模式的现状 21.2研究意义 31.3设计技术及开发环境 51.3.1设计技术 51.3.2开发环境 72可行性分析 92.1组织和管理可行性 92.2经济可行性 92.3技术可行性 93需求分析 113.1现行业务分析 113.1.1业务流程 113.1.2功能分析 113.2系统建模 133.2.1用户身份验证用例图 133.2.2个人通讯录用例图 133.2.3职工信息管理用例图 143.2.4日程安排用例图 143.2.5日志管理用例图 153.2.6短消息管理用例图 153.2.7公告管理用例图 163.2.8文件管理用例图 163.2.9会议管理用例图 174系统设计 184.1系统设计 184.1.1用户身份验证模块流程图 194.1.2个人通讯录模块流程图 194.1.3职工信息管理模块流程图 214.1.4日程安排模块流程图 224.1.5工作日志模块流程图 234.1.6短消息管理模块流程图 244.1.7文件管理模块流程图 254.1.8公告管理模块流程图 264.1.9会议管理模块流程图 274.2数据库设计 294.2.1数据库概念设计 294.2.2数据库逻辑设计 315系统实现 355.1系统架构 355.1.1系统架构图 355.1.2程序结构图 365.2持久层Hibernate实现 375.2.1创建并配置Hibernate映射文件 375.2.2开发并配置HibernateDAO层 385.3控制层Struts实现 385.3.1开发Struts核心流程代码 385.3.2开发JSP页面原型 405.3.3增加表单校验功能 405.3.4调用DAO组件操作数据库 415.4业务层Spring实现 415.4.1数据源配置 425.4.2配置SessionFactory 435.4.3配置事务 435.4.4配置DAO组件 435.4.5配置DAO事务 436系统测试 446.1测试计划 446.2测试用例 446.2.1对身份验证功能进行测试 446.2.2对职工信息管理功能进行测试 456.3测试结果 467系统开发总结 478结束语 48参考文献 49致谢 50附录 51A次要源程序 51B用户手册 55B.1系统功能简介 55B.2系统的支持平台 56B.3安装说明 56B.4使用说明 59B.5系统维护方法 72C软件光盘 73C.1光盘的树形目录 73C.2光盘文件一览表 73D科技译文 74JavaLearningPathprocess 74JAVA学习过程 81
2023/2/13 15:13:47 1.11MB OA系统 毕业 设计 论文
1
基于java+sql的超市仓库管理系统,附带文档数据库。
方便运转。
内有四个不同的源程序代码供你选择。
2023/2/12 15:33:08 13.08MB 超市仓库 进存销 毕业设计 论文全套
1
基于MySQL,设计并实现一个简单的旅行预订系统。
该系统涉及的信息有航班、大巴班车、宾馆房间和客户数据等信息。
其关系模式如下:FLIGHTS(StringflightNum,intprice,intnumSeats,intnumAvail,StringFromCity,StringArivCity);
HOTELS(Stringlocation,intprice,intnumRooms,intnumAvail);
BUS(Stringlocation,intprice,intnumBus,intnumAvail);
CUSTOMERS(StringcustName,custID);
RESERVATIONS(StringcustName,intresvType,StringresvKey)为简单起见,对所实现的应用系统作下列假设:1.在给定的一个班机上,所有的座位价格也一样;
flightNum是表FLIGHTS的一个主码(primarykey)。
2.在同一个地方的所有的宾馆房间价格也一样;
location是表HOTELS的一个主码。
3.在同一个地方的所有大巴车价格一样;
location是表BUS的一个主码。
4.custName是表CUSTOMERS的一个主码。
5.表RESERVATIONS包含着那些和客户预订的航班、大巴车或宾馆房间相应的条目,具体的说,resvType指出预订的类型(1为预订航班,2为预订宾馆房间,3为预订大巴车),而resvKey是表RESERVATIONS的一个主码。
6.在表FLIGHTS中,numAvail表示指定航班上的还可以被预订的座位数。
对于一个给定的航班(flightNum),数据库一致性的条件之一是,表RESERVATIONS中所有预订该航班的条目数加上该航班的剩余座位数必须等于该航班上总的座位数。
这个条件对于表BUS和表HOTELS同样适用。
应用系统应完成如下基本功能:1.航班,大巴车,宾馆房间和客户基础数据的入库,更新(表中的属性也可以根据你的需要添加)。
2.预定航班,大巴车,宾馆房间。
3.查询航班,大巴车,宾馆房间,客户和预订信息。
4.查询某个客户的旅行线路。
5.检查预定线路的完整性。
6.其他任意你愿意加上的功能。
作业检查:1.提交源程序,可执行程序,以及程序运行说明。
2.系统分析、设计与实现报告。
3.考试前检查完毕,延迟拒收。
4.提交word文件,方式为:学号_姓名
2023/2/12 8:08:01 84KB xidian
1
基于matlab的各种多元统计分析模型源代码-空调负荷神经网络预测airconditionforcasting.rar本人为了获得更多资源共享的权限,只好吐血奉献自己一年来收集和改写的matlab源程序,部分为原创;
里面包含有主成分分析、岭回归分析、因子分析、判别分析、聚类分析、回归分析等;
绝对可用哦,不过,还是得提醒一下,由于不断是自己使用,里面没有更多注释,希望没有这方面知识基础的朋友慎重下载哪,免得浪费精力撒。
    希望大家多多支持,给予评论。
2023/2/12 3:19:30 447B matlab
1
部分代码:functionPopulation1=GA_tubian(Population,pe_tubian)%遗传算法突变算子%pe为突变概率Population1=Population;n=length(Population(:,1));m=length(Population(1,:));fori=1:nforj=1:mtest=rand;iftest<pe_tubianPopulation1(i,j)=1-Popula
1
本文引见了分治法的基本思想和基本步骤,通过实例讨论了利用分治策略设计算法的途径
2023/2/9 15:11:52 8KB 分治算法源程序
1
c#.net源程序局域网聊天程序xml保存异步socket套接字技能
1
最小二乘法训练RBF神经网络的源程序能够运转
2023/2/9 0:13:49 952B 最小二乘 RBF
1
文本挖掘tmSVM开源项目集成libSVM和liblinear包含Python和Java两种版本带PDF源码参考文档简介文本挖掘无论在学术界还是在工业界都有很广泛的应用场景。
而文本分类是文本挖掘中一个非常重要的手段与技术。
现有的分类技术都已经非常成熟,SVM、KNN、DecisionTree、AN、NB在不同的应用中都展示出较好的效果,前人也在将这些分类算法应用于文本分类中做出许多出色的工作。
但在实际的商业应用中,仍然有很多问题没有很好的解决,比如文本分类中的高维性和稀疏性、类别的不平衡、小样本的训练、Unlabeled样本的有效利用、如何选择最佳的训练样本等。
这些问题都将导致curveofdimension、过拟合等问题。
这个开源系统的目的是集众人智慧,将文本挖掘、文本分类前沿领域效果非常好的算法实现并有效组织,形成一条完整系统将文本挖掘尤其是文本分类的过程自动化。
该系统提供了Python和Java两种版本。
主要特征该系统在封装libsvm、liblinear的基础上,又增加了特征选择、LSA特征抽取、SVM模型参数选择、libsvm格式转化模块以及一些实用的工具。
其主要特征如下:封装并完全兼容*libsvm、liblinear。
基于Chi*的featureselection见feature_selection基于LatentSemanticAnalysis的featureextraction见feature_extraction支持Binary,Tf,log(tf),Tf*Idf,tf*rf,tf*chi等多种特征权重见feature_weight文本特征向量的归一化见Normalization利用交叉验证对SVM模型参数自动选择。
见SVM_model_selection支持macro-average、micro-average、F-measure、Recall、Precision、Accuracy等多种评价指标见evaluation_measure支持多个SVM模型同时进行模型预测采用python的csc_matrix支持存储大稀疏矩阵。
引入第三方分词工具自动进行分词将文本直接转化为libsvm、liblinear所支持的格式。
使用该系统可以做什么对文本自动做SVM模型的训练。
包括Libsvm、Liblinear包的选择,分词,词典生成,特征选择,SVM参数的选优,SVM模型的训练等都可以一步完成。
利用生成的模型对未知文本做预测。
并返回预测的标签以及该类的隶属度分数。
可自动识别libsvm和liblinear的模型。
自动分析预测结果,评判模型效果。
计算预测结果的F值、召回率、准确率、Macro,Micro等指标,并会计算特定阈值、以及指定区间所有阈值下的相应指标。
分词。
对文本利用mmseg算法对文本进行分词。
特征选择。
对文本进行特征选择,选择最具代表性的词。
SVM参数的选择。
利用交叉验证方法对SVM模型的参数进行识别,可以指定搜索范围,大于大数据,会自动选择子集做粗粒度的搜索,然后再用全量数据做细粒度的搜索,直到找到最优的参数。
对libsvm会选择c,g(gamma),对与liblinear会选择c。
对文本直接生成libsvm、liblinear的输入格式。
libsvm、liblinear以及其他诸如weka等数据挖掘软件都要求数据是具有向量格式,使用该系统可以生成这种格式:labelindex:valueSVM模型训练。
利用libsvm、liblinear对模型进行训练。
利用LSA对进行FeatureExtraction*,从而提高分类效果。
开始使用QuickStart里面提供了方便的使用指导如何使用该系统可以在命令行(Linux或cmd中)中直接使用,也可以在程序通过直接调用源程序使用。
在程序中使用。
#将TMSVM系统的路径加入到Python搜索路径中importsyssys.path.insert(0,yourPath+"\tmsvm\src")importtms#对data文件夹下的binary_seged.train文件进行训练。
tms.tms_train(“../data/binary_seged.train”)#利用已经训练好的模型,对对data文件夹下的binary_seged.test文件预测tms.tms_predict(“../data/binary_seged.test”,”../model/tms.config”)#对预测的结果进行分析,评判模型的效果tms.tms_analysis(“../tms.result”)在命令行中调用#对data文件夹下的binary_seged.train文件进行训练。
$pythonauto_train.py[options]../data/binary_seged.train#利用已经训练好的模型,对对data文件夹下的binary_seged.test文件预测pythonpredict.py../data/binary_seged.train../model/tms.config#对预测的结果进行分析,评判模型的效果$pythonresult_anlaysis.py../tms.result上面的调用方式都是使用系统中默认的参数,更具体、灵活的参数见程序调用接口输入格式labelvalue1[value2]其中label是定义的类标签,如果是binaryclassification,建议positive样本为1,negative样本为-1。
如果为multi-classification。
label可以是任意的整数。
其中value为文本内容。
label和value以及value1和value2之间需要用特殊字符进行分割,如”\t”模型输出模型结果会放在指定保存路径下的“model”文件夹中,里面有3个文件,默认情况下为dic.key、tms.model和tms.config。
其中dic.key为特征选择后的词典;
tms.model为训练好的SVM分类模型;tms.config为模型的配置文件,里面记录了模型训练时使用的参数。
临时文件会放在“temp”文件夹中。
里面有两个文件:tms.param和tms.train。
其中tms.param为SVM模型参数选择时所实验的参数。
tms.train是供libsvm和liblinear训练器所使用的输入格式。
源程序说明src:即该系统的源代码,提供了5个可以在Linux下可以直接调用的程序:auto_train.py、train.py、predict.py为在Linux下通过命令行调用的接口。
tms.py为在程序中调用的主文件,直接通过importtms即可调用系统的所有函数。
其他文件为程序中实现各个功能的文件。
lsa_src:LSA模型的源程序。
dependence:系统所依赖的一些包。
包括libsvm、liblinear、Pymmseg在Linux32位和64位以及windows下的支持包(dll,so文件)。
tools:提供的一些有用的工具,包括result_analysis.py等。
java:java版本的模型预测程序,项目重要更新日志2012/09/21针对linux下的bug进行修正。
重新生成win和linux版本的。
2012/03/08增加stem模块,并修正了几个Bug。
2011/11/22tmsvm正式发布。
联系方式邮箱:zhzhl202@163.comThanks本系统引用了libsvm、liblinear的包,非常感谢Chih-JenLin写出这么优秀的软件。
本系统还引用了Pymmseg,非常感谢pluskid能为mmseg写出Python下可以直接使用的程序从最初的想法萌生到第一版上线,中间试验了很多算法,最终因为效果不好删掉了很多代码,在这期间得到了许多人的帮助,非常感谢杨铮、江洋、敏知、施平等人的悉心指导。
特别感谢丽红一直以来的默默支持。
2023/2/8 18:37:14 3.39MB 文本挖掘 tmSVM libSVM 支持向量机
1
MC9S12XS128老手入门源代码,PDF文档,AD源代码,LCD5110源代码,LCD12864源代码,LED源代码,MatrixKey源代码,MC9S12XS128SCI代码,MotorPID源代码,PWM源程序,SCI源程序,TIM源代码等。
2023/2/8 15:11:42 1.08MB MC9S12
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡