浙大四版概率论与数理统计教材与习题解析pdf高清,文档为概率论与数理统计教材与习题解析扫描版
2023/12/25 3:28:05 75.53MB pdf
1
免责声明这是的经过修改的存储库。
请参阅原始存储库以获取更多详细信息。
联合身体分析和姿势估计网络(JPPNet)梁晓丹,龚科,沉和林亮,“观察人:联合的身体分析和姿势估计网络和一个新的基准”,T-介绍JPPNet是人类解析和姿态估计建立在之上的国家的艺术深度学习方法。
这个新颖的联合人类解析和姿态估计网络在端到端框架中结合了多尺度特征连接和迭代位置细化,以研究有效的上下文建模,然后实现彼此互利的解析和姿态任务。
这个统一的框架为人类分析和姿势估计任务实现了最先进的性能。
此发行版为T-PAMI2018接受的中报告的关键模型成分提供了一个公开可用的实现。
我们通过探索一种新颖的
2023/12/24 19:03:31 2.58MB ssl parsing human human-parsing
1
新能源汽车国家标准GB32960报文分析工具能够将符合GB32960协议的报文日志通过EXCEL表格导出,用于分析车辆行驶过程中的数据变化过程。
TBOX上传到服务器的数据,在串口都有一个同步输出,串口输出的数据可读性差,必须解析才看得懂。
利用串口接收的数据,按照GB32960进行解析,就可以读懂TBOX上传信息。
解析文件可保存为EXCEL格式。
1.点击右上角“打开数据文件”,选择一个OBS测试软件生成的串口数据TXT文件2.点击保存(磁盘符合)的按钮,保存为EXCEL文件。
注意:example.1文件是模版,必须在同一目录下20170919更新1.一个TXT文件只保存一个同名同目录的EXCEL文件,多次保存则覆盖2.根据覃工要求,EXCEL文件增加一个总表(ALL),方便运用计算公式对数据进行验证3.改正部分数据大小端和小数点的错误
2023/12/24 19:23:45 1.64MB 32960
1
Vc++/MFC、Json解析,内涵jsonDLL.lib文件和json文件夹,还有Json实例。
将json文件夹放到工程所在路径下,然后在工程里包含里面所有的头文件和引用lib文件。
添加头文件:#pragmacomment(lib,"JsonDLL.lib")#include"json/json.h"#include#include。
2023/12/22 21:31:48 345KB Vc++/MFC下 Json解析 Jsoncpp运用
1
VisualC++面向对象与可视化程序设计习题解析与编程实例(第2版)包括问答解析及程序代码
2023/12/21 1:02:44 12.09MB VisualC++ 习题解析 黄维通
1
HCIE-Cloud笔试题库带解析,本人已过,备考时亲自一题一题找出每题出处,并截图
2023/12/21 1:13:18 5.64MB HCIE Cloud 云计算 华为认证
1
系统分析师2019年自用备考资料,这本真是解析几乎是必备的资料.更多系统分析师资料点我查看,我会陆续更新
2023/12/21 0:05:33 6.13MB 2019版 系统分析师 必备 希赛版
1
ocjp认证,1z0-808题库(中英)+解析。
jdk1.8版本。
中文英文题库包含解析。
中文自行整理的。
希望对各位有所帮助。
2023/12/20 11:21:55 4.16MB ocp jdk java scjp
1
MapReduce采用"分而治之"的思想,把对大规模数据集的操作,分发给一个主节点管理下的各个分节点共同完成,然后通过整合各个节点的中间结果,得到最终结果。
简单地说,MapReduce就是"任务的分解与结果的汇总"。
在Hadoop中,用于执行MapReduce任务的机器角色有两个:一个是JobTracker;
另一个是TaskTracker,JobTracker是用于调度工作的,TaskTracker是用于执行工作的。
一个Hadoop集群中只有一台JobTracker。
在分布式计算中,MapReduce框架负责处理了并行编程中分布式存储、工作调度、负载均衡、容错均衡、容错处理以及网络通信等复杂问
2023/12/19 16:05:55 595KB hadoopMapReduce实例解析
1
前言第1章概述1.1宽带无线移动通信系统的发展1.2功率放大器线性化技术简介1.2.1国内外研究现状1.2.2本书的创新性工作1.3本书结构安排第2章功率放大器数学模型2.1功率放大器非线性效应分析2.2非线性效应基带等效分析2.3无记忆功率放大器典型模型2.3.1Saleh模型2.3.2Rapp模型2.3.3多项式模型2.4宽带功率放大器记忆效应分析2.5有记忆功率放大器模型2.5.1Volterra模型2.5.2多项式模型2.5.3Wiener模型2.5.4Hammerstein模型2.5.5并行Hammerstein模型2.5.6神经网络模型2.6本章小结第3章功率放大器非线性对传输信号的影响3.1非线性的时域及频域分析3.1.1谐波失真3.1.2互调失真3.1.3交调失真3.1.4AM/AM和AM/PM畸变3.2功率放大器非线性对多载波信号功率谱的影响3.2.1无记忆模型功率谱的解析表达3.2.2有记忆模型功率谱的解析表达3.2.3仿真及分析3.3功率放大器非线性对多载波信号符号率的影响3.3.1误符号率的解析表达3.3.2仿真及分析3.4功率放大器非线性评价指标3.4.1分贝压缩点功率3.4.2三阶互调系数3.4.3三阶截断点3.4.4交调系数3.4.5输入及输出回退3.4.6系统性能总损耗3.5本章小结第4章宽带功率放大器预失真技术简介4.1数字预失真技术综述4.2预失真技术基本原理4.3非自适应性预失真技术4.3.1方案概述4.3.2特性曲线的测量4.4射频自适应预失真技术4.5中频自适应预失真技术4.6基带自适应数字预失真技术4.7本章小结第5章宽带功率放大器预失真估计结构5.1直接学习结构5.2间接学习结构5.2.1基于IDLA的新算法5.2.2仿真及分析5.3本章小结第6章基于查询表的数字预失真6.1查询表预失真方法综述6.1.1查询表形式6.1.2查询表的指针方式6.1.3查询表地址索引方式6.1.4查询表自适应算法6.1.5查询表预失真方法的不足6.2无记忆查询表预失真方法6.2.1常规查询表预失真算法6.2.2改进的查询表预失真方法6.3有记忆查询表预失真方法6.3.1一维查询表预失真方法6.3.2二维查询表预失真方法6.4本章小结第7章基于多项式的数字预失真7.1多项式预失真方法综述7.1.1多项式模型7.1.2多项式自适应算法7.1.3多项式预失真方法的不足7.2多项式形式的选择7.2.1预失真多项式形式7.2.2正交多项式模型7.3无记忆多项式预失真方法7.3.1分段无记忆多项式预失真方法7.3.2直接学习结构递推系数估计方法7.3.3间接学习结构系数估计方法7.3.4正交多项式预失真方法7.3.5动态系数多项式预失真方法7.4有记忆多项式预失真方法7.4.1分段有记忆多项式预失真方法7.4.2归一化最小均方系数估计方法7.4.3广义归一化梯度下降系数估计方法7.4.4广义记忆多项式预失真方法7.4.5分数阶记忆多项式预失真方法7.4.6Hammerstein预失真方法7.5本章小结第8章宽带功率放大器预失真方案设计8.1数字预失真系统设计8.2反馈环路延迟估计8.2.1常规环路延迟估计方法8.2.2提出的环路延迟估计方法8.2.3仿真分析8.3PAPR降低技术与预失真8.3.1问题引出8.3.2PAPR降低技术8.3.3限幅对OFDM信号预失真性能的影响8.3.4PAPR降低技术与PA线性化的内在联系8.4宽带功率放大器的有效阶估计8.5关于硬件实现8.5.1非自适应预失真硬件实现8.5.2自适应数字预失真硬件实现8.6宽带功率放大器预失真新理论与技术8.6.1功率放大器预失真新理论8.6.2功率放大器预失真新技术8.7本章小结参考文献附录A符号表附录B缩略语
2023/12/19 1:19:29 18.5MB 预失真
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡