提出了一种基于CT-CZT-SVD的数字水印算法。
该算法利用CZT变换算法的高频窄带分析能力和奇异值的稳定性对CT变换获取的表示细节特征的图像高频分量进行混合处理。
实验表明,该算法通过提高频率分辨率及频谱锐化效果,能充分表达图像的细节信息,无效提升了水印图像的不可见性以及对常见的几何攻击、JPEG压缩等水印攻击的鲁棒性。
1
针对集中式多用户多天线认知无线电网络,提出一种基于自适应空间映射的频谱共享策略,根据授权用户接入的随机性所带来的频谱和空间资源占用情况的变化,认知系统将发射信号自适应地映射在认知基站与授权用户之间信道的子空间上,避免或抑制系统间干扰,从而在保证授权用户通信质量的前提下,为认知用户提供通信机会,并且在认知系统内部利用块对角化和奇异值分解方法分离不同认知用户的信号,消除系统内干扰。
功能分析和仿真结果表明,与已有的频谱共享方法相比较,该策略不仅具有更高的认知系统可达和速率,并且对于由不同授权系统负载情况形成的不同场景具有更强的鲁棒性。
1
针对图像边缘与轮廓不能精确重构的问题,提出了一种基于灰度共生矩阵的多尺度分块压缩感知算法。
该算法利用三级离散小波变换将图像分解为高频部分和低频部分。
通过灰度共生矩阵的熵分析高频部分图像块的纹理复杂度,并根据图像块纹理进行再分块、自顺应分配采样率。
采用平滑投影Landweber算法重构图像,消除分块引起的块效应。
对多种图像进行压缩重构仿真,实验结果表明,无观测噪声情况、采样率为0.1时,本算法在Mandrill图像上得到的峰值信噪比(PSNR)为25.37dB,比现有非均匀分块算法提高了2.51dB。
不同噪声水平下,本算法的PSNR比无噪时仅下降了0.41~2.05dB。
对于纹理复杂度较高的图像,本算法的重构效果明显优于非均匀分块算法,对噪声具有较好的鲁棒性。
2015/9/27 10:19:52 11.24MB 图像处理 压缩感知 灰度共生 自适应采
1
PID控制器是在工业过程控制中常见的一种控制器,因此,PID参数整定与优化不断是自动控制领域研究的重要问题。
遗传算法是一种具有极高鲁棒性的全局优化方法,在自控领域得到广泛的应用。
针对传统PID参数整定的困难性,本文提出了把遗传算法运用于PID参数整定中。
2015/11/4 17:56:56 94KB 毕业论文 遗传算法 PID matlab
1
udf官方算例,有助于大家更好地掌握udf的使用。
UDF并不是什么神秘的东西,然而在地球人的眼中,凡是与编程相关的工作,总是认为有点儿高大上罢了。
其实UDF程序的编写绝对只是个体力活儿。
Fluent是一个通用软件。
所谓的通用软件,意思就是说啥事儿都能做。
能做流动,能做传热,能做化学反应,能做多相流,貌似与NS相关的内容都能做。
然而,无所不能往往也意味着不甚精通。
软件为了满足其通用性,无疑在各种参数的选取上偏于保守,比如说各种求解算法、各种模型参数,为了保证其收敛性和鲁棒性,必然会存在舍弃精度的做法。
因而,通用的软件常常难以满足高级人士的计算需求。
作为商用软件,Fluent自然不愿意损失这些高级用户,因而软件给高级用户开了一扇窗口,允许用户根据自己的需求对软件进行一定程度的定制。
因而就有了我们这里所说的UDF。
UDF(UserDefinedFunctions,用户自定义功能),采用C语言进行编写,可以采用编译或解释的方式加载到Fluent中,利用UDF可以对Fluent计算过程中的一些模型参数或计算流程进行控制。
2015/4/24 6:49:18 2.38MB udf 案例 Ansys
1
优点——RBF神经网络有很强的非线性拟合能力,可映射任意复杂的非线性关系,而且学习规则简单,便于计算机实现。
具有很强的鲁棒性、记忆能力、非线性映射能力以及强大的自学习能力,因此在彩票等非线性大数据分析预测方面,有着很大的应用市场。
具有局部逼近的优点RBF神经网络是一种功能优良的前馈型神经网络,RBF网络可以任意精度逼近任意的非线性函数,且具有全局逼近能力,从根本上解决了BP网络的局部最优问题,而且拓扑结构紧凑,结构参数可实现分离学习,收敛速度快。
只要在MATLAB(R2014b)平台上,通过运行径向基神经网络“RBF_SSQ”就可以快速预测。
预测系统推荐两注(参数可修改),单注可每号+-1,最多可12个号复试;
也可直接单注投注。
单注中奖率一般在2个以上,复试一般在4-6个红球。
预测可靠性远远高于网络彩票预测机构的水准。
2022/10/9 15:27:37 184KB 彩票预测
1
LEGOEV3双轮均衡车模型和simulink控制模型,直接可用,鲁棒性很好
2022/9/30 11:06:09 276KB LEGO EV3 双轮平衡车 simulink
1
模糊c均值(FCM)聚类算法已广泛应用于许多医学图像分割中。
但是,由于不考虑空间信息,因而常规的标准FCM算法对噪声敏感。
为了克服上述问题,提出了一种新颖的改进的FCM算法(以后称为FCM-AWA)用于图像分割。
该算法是通过修改常规FCM算法中的目标函数,即通过将空间邻域信息合并到标准FCM算法中来实现的。
给出了自适应加权平均(AWA)滤波器以指示相邻像素对中心像素的空间影响。
在实施加权平均图像时,通过预定义的非线性函数自动确定控制模板(邻居寡妇)的参数(加权系数)。
该算法既适用于人工合成图像,又适用于真实图像。
此外,使用基于算法的分割方法对牙菌斑进行了定量分析。
实验结果表明,与标准FCM算法和另一种FCM算法(由Ahmed提出)相比,该算法对噪声的鲁棒性更高。
此外,使用所提出的方法对牙菌斑进行定量的结果表明,FCM-AWA提供了一种定量,客观和有效的牙菌斑分析方法,具有广阔的前景。
2015/7/18 7:39:45 128KB Fuzzy c-means (FCM); Spatial
1
针对电力用户的异常用电行为,提出一种基于深度学习的用户异常用电模式检测模型。
利用TensorFlow框架,构建了特征提取网络和多层特征匹配网络。
基于长短期记忆(LSTM)的特征提取网络,从大量时间序列中提取出不同的序列特征。
基于全连接网络(FCN)的多层特征匹配网络,利用提取出的特征数据,完成对异常用电数据的检测。
实例分析表明,与非深度学习检测模型相比,所提模型可愈加有效地完成异常用电模式检测。
此外,与多层LSTM分类模型相比,所提模型具有更好的准确性和鲁棒性。
2016/8/6 7:32:44 527KB 检测 深度学习
1
本文主要研究基于里程计和单目视觉传感器的地面车辆定位与地图构建问题。
为了提高地面车辆视觉估计的精度,研究人员利用了近似平面运动的约束,并且通常将其作为SE(3)姿势的随机约束来实现。
本文提出了一种在se(2)上直接参数化地面车辆姿势的简单算法。
该方法不忽略se(2)运动扰动,而是将其引入一个新的se(2)-xyz约束的综合噪声项中,通过图像特征测量将se(2)姿势和3d地标关联起来。
对于里程测量处理,我们还提出了一种有效的se(2)预积分算法。
利用这些约束条件,以一种常用的图优化结构,开发了一个完整的视觉里程定位与映射系统。
在工业室内环境下的实际实验验证了该方法在精度和鲁棒性方面的优越性。
2017/5/24 16:35:29 1.81MB orbslam robot slam se2c
1
共 106 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡