基于K-means聚类算法的图像分割算法的基本原理: 基于K-means聚类算法的图像分割以图像中的像素为数据点,按照指定的簇数进行聚类,然后将每个像素点以其对应的聚类中心替代,重构该图像。
算法步骤:①随机选取K个初始聚类中心;
②计算每个样本到各聚类中心的距离,同时将每个样本归到与其距离最近的聚类中心;
③对每个簇,以所有样本的均值作为该簇新的聚类中心;
④重复第②~③步,直到聚类中心不再变化;
⑤结束,得到K个聚类。
2024/11/16 6:47:58 224KB K-means聚类 图像分割
1
下面是一种直方图双峰法改进方法1求出图像中的最小和最大灰度值和的阈值初值2根据阈值Tk将图像分割成目标和背景两部分求出两部分的平均灰度值和其中是图像上点的灰度值是点的权重系数取点灰度的概率3求出新的阈值4若结束否则+1转第2步5第4步结束后Tk即为最佳阈值。
2024/11/14 22:20:21 273B 双峰法
1
实现功能:在显示器上显示琴键的动画效果;
可分别从嵌入式实验设备和PC标准键盘弹奏和播放歌曲:1按“1--7”中的任一数字键,则发出对应的中音。
2若同时按下“高音键”和“1--7”中的任一数字键,则发出对应的高音。
3若同时按下“低音键”和“1--7”中的任一数字键,则发出对应的低音。
4发音的节拍根据按键的长短决定。
5可以实现两个音调的选择。
6可以预先存放5首曲子(勇气、水手、大海、感恩的心等),按下不同的按键则对应演奏出不同的曲子。
7按下“结束键”,程序运行结束,返回到DOS状态。
2024/11/13 5:52:19 848KB PC 汇编语言 1760行源代码
1
数字逻辑课程设计VHDL多功能数字钟这个数字钟是我根据我老师的设计自己改编的,内部结构变化挺大的,功能也比较全。
1、具有以二十四小时制计时、显示、整点报时、时间设置和闹钟的功能。
2、设计精度要求为1秒。
(一)计时:正常工作状态下,每日按24h计时制计时并显示,蜂鸣器无声,逢整点报时。
(二)校时:在计时显示状态下,k=1,进入“小时”校准状态,之后按下“k=1”则进入“分”校准状态,继续按下“k=1”则进入“调秒”状态,第三次按下“k键”又恢复到正常计时显示状态。
(1)“小时”校准状态:在“小时”校准状态下,显示“小时”的数码管闪烁,并以1HZ的频率递增计数。
(2)“分”校准状态:在“分”校准状态下,显示“分”的数码管闪烁,并以1HZ的频率递增计数。
(3)“秒”校准状态:在“调秒”状态下,显示“秒”的数码管闪烁,并以1HZ的频率递增计数。
(三)整点报时:蜂鸣器在“59”分钟的第“51”、“53”、“55”、“57”秒发频率为512HZ的低音,在“59”分钟的第“59”秒发频率为1024HZ的高音,结束时为整点。
(四)显示:要求采用扫描显示方式驱动6个LED数码管显示小时、分、秒。
(五)闹钟:闹钟定时时间到,蜂鸣器发出周期为1秒的“滴”、“滴”声,持续时间为60秒;
闹钟定时显示。
(六)闹钟定时设置:在闹钟定时显示状态下,按下“k=1”,进入闹钟的“时”设置状态,之后按下“k=1”进入闹钟的“分”设置状态,继续按下“k=1”,又恢复到闹钟定时显示状态。
(1)闹钟“小时”设置状态:在闹钟“小时”设置状态下,显示“小时”的数码管闪烁,并以1HZ的频率递增计数。
(2)闹钟“分”设置状态:在闹钟“分”设置状态下,显示“分”的数码管闪烁,并以1HZ的频率递增计数。
1
加密算法在信息技术领域中起着至关重要的作用,用于保护数据的安全性和隐私性。
SHA(SecureHashAlgorithm)是一种广泛使用的散列函数,它将任意长度的数据转换为固定长度的摘要值。
SHA512是SHA家族中的一员,提供更强大的安全性能,尤其适合大数据量的处理。
本文将深入探讨SHA512加密算法的原理、C++实现以及其在实际应用中的重要性。
SHA512算法基于密码学中的消息摘要思想,通过一系列复杂的数学运算(如位操作、异或、循环左移等),将输入数据转化为一个512位的二进制数字,通常以16进制形式表示,即64个字符。
这个过程是不可逆的,意味着无法从摘要值推导出原始数据,因此被广泛应用于数据完整性验证和密码存储。
在C++中实现SHA512算法,首先需要理解其基本步骤:1.**初始化**:设置一组初始哈希值(也称为中间结果)。
2.**预处理**:在输入数据前添加特殊位和填充,确保数据长度是512位的倍数。
3.**主循环**:将处理后的数据分成512位块,对每个块进行多次迭代计算,每次迭代包括四个步骤:扩展、混合、压缩和更新中间结果。
4.**结束**:将最后一个中间结果转换为16进制字符串,即为SHA512的摘要值。
C++代码实现时,可以使用位操作、数组和循环来完成这些计算。
为了简化,可以使用`#include`中的`uint64_t`类型表示64位整数,因为SHA512处理的是64位的数据块。
同时,可以利用`#include`中的`memcpy`和`memset`函数来处理内存操作。
此外,`#include`和`#include`库可用于将二进制数据转换成16进制字符串。
以下是一个简化的C++SHA512实现框架:```cpp#include#include#include#include#include//定义常量和初始化哈希值conststd::arraykInitialHashValues{...};std::arrayhashes=kInitialHashValues;//主循环函数voidProcessBlock(constuint8_t*data){//扩展、混合、压缩和更新中间结果}//输入数据的处理voidPreprocess(conststd::string&input){//添加填充和特殊位}//将摘要转换为16进制字符串std::stringDigestToHex(){//转换并返回16进制字符串}//使用示例std::stringmessage="Hello,World!";Preprocess(message);constuint8_t*data=reinterpret_cast(message.c_str());size_tdataSize=message.size();while(dataSize>0){if(dataSize>=128){ProcessBlock(data);dataSize-=128;data+=128;}else{//处理剩余数据}}std::stringresult=DigestToHex();```这个框架只是一个起点,实际的SHA512实现需要填充完整的扩展、混合和压缩步骤,以及处理边界条件。
此外,为了提高效率,可能还需要使用SIMD(SingleInstructionMultipleData)指令集或其他优化技术。
SHA512算法在多种场景下具有广泛的应用,如:-**文件校验**:通过计算文件的SHA512摘要,可以验证文件在传输或存储过程中是否被篡改。
-**密码存储**:在存储用户密码时,不应直接保存明文,而是保存SHA512加密后的哈希值。
当用户输入密码时,同样计算其SHA512值并与存储的哈希值比较,不匹配则表明密码错误。
-**数字签名**:在公钥加密体系中,SHA512可以与非对称加密算法结合,生成数字签名,确保数据的完整性和发送者的身份验证。
了解并掌握SHA512加密算法及其C++实现,对于信息安全专业人员来说至关重要,它不仅有助于提升系统的安全性,也有助于应对不断发展的网络安全威胁。
通过深入学习和实践,我们可以更好地理解和利用这一强大的工具。
2024/11/12 20:26:46 2.14MB 加密算法
1
修正了已发现的所有错误.欢迎大家下载试用..一、项目名称:学校学生信息管理系统。
二、项目目标:实现对学校学生的信息管理——信息的建立和维护、信息的检索。
三、主要功能:1.信息的输入:建立学生档案文件。
2.信息维护:添加:增加新学生;
修改:学生信息的改变;
删除:学生减少。
3.信息处理按要求检索学生信息;
按要求统计信息。
四、界面系统1.系统管理员进入(请输入密码)2.一级菜单(1信息维护2信息检索3信息统计4退出)3.二级菜单信息维护(1建立学生成绩文件2添加学生记录3删除学生记录4修改学生记录5返回上级菜单)信息检索(1按班级查找2返回上级菜单)信息统计(1成绩统计2返回上级菜单)五、主要功能说明:1.用口令(密码)形式验证管理员身份(可输入三次),合法者可进入,否则程序结束。
2.有关功能说明1)建立学生成绩表(模块a)建立新的学生成绩文件;
建立若干学生记录,包括姓名、学号、班级、课程编号、成绩。
2)添加学生记录(模块b)在已存在的学生成绩文件中添加新记录。
3)删除学生记录(模块c)在学生成绩文件中删除有三门课程不及格的学生记录;
删除前,逐条显示符合删除条件的学生姓名、成绩,确认后再删除。
4)修改学生信息(模块d)输入学生学号,在学生成绩文件中找出该学生记录;
在屏幕上逐条显示该学生的各条记录;
每显示一条,询问是否修改,如果“Y”,输入修改后数据,将文件原记录删除,保存新的记录;
5)按姓名和班级查找(模块e)输入姓名显示相应信息。
6)信息统计(模块f)同时按照班级和课程统计每门课程、每个班级的平均成绩,最高分、最低分;
在屏幕上先依次显示各门课程,对应的各个班级的统计数据。
7)退出信息管理系统,返回操作系统。
2024/11/11 9:38:17 673KB c++ 信息 学生 管理
1
洞察力收集并总结了可视化技术有效性的研究饼图与方形饼图与堆积条形图饼图和甜甜圈没有什么不同,尽管两者都比方形饼图更糟。
饼状图饼图具有误导性:切片的位置和颜色会影响我们对其大小的判断。
更喜欢条形图而不是饼图。
(从某种意义上说,我们的分析提供了“棒-圆辩论”的分辨率……关于划分的条形图还是饼图对于描绘整体的某些部分而言是优越的。
比赛似乎以抽签方式结束。
我们得出的结论是,都不应该使用任何图形形式,因为其他方法显然更好。
分割后的条形图始终可以由分组的条形图替换;
再次,我们更喜欢分组点图而不是分组条形图。
WilliamS.Cleveland的;
罗伯特·麦吉尔动画图形,KirkP.Goldsberry和SarahBattersby许多人对动画图形视而不见,尤其是那些在颜色和形状之间突然过渡的图形。
对价值变化进行动画处理可以提高对变化的认识
2024/11/5 17:47:50 4KB
1
包含3124个IP地址段,有国外的IP段。
每个IP段包含开始IP数,开始IP,结束IP数,所属国家或城市,具体地点。
IP转换方式a.b.c.d==>a*256*256*256+b*256*256+c*256+d
2024/11/3 16:36:21 3.99MB IP地址段
1
KD-Tree是一种由二叉搜索树推广而来的用于多维检索的树的结构形式(K即为空间的维数)。
它与二叉搜索树不同的是它的每个结点表示k维空间的一个点,并且每一层都根据该层的分辨器(discriminator)对相应对象做出分枝决策。
顶层结点按由分辨器决定的一个维度进行划分,第二层则按照该层的分辨器决定的一个维进行划分···,以此类推在余下各维之间不断地划分。
直至一个结点中的点数少于给定的最大点数时,结束划分。
  KD-Tree的分辨器根据不同的用途会有不同的分辨器,最普通的分辨器为:nmodk(树的根节点所在层为第0层,根结点孩子所在层为第1层,以此类推)  即:若它的左子树非空,则其左子树上所有结点的第i维值均小于其根结点的第i维值;
  若它的右子树非空,则其右子树上所有结点的第i维值均大于其根结点的第i维值;
并且它的左右子树也分别为KD-Tree。
2024/11/3 10:53:27 4KB KD-Tree
1
献给想用VB开发游戏的人,我本来想用VB做一个游戏结束和VB的相遇,然后进入另一个世界VC的世界,但是只差一点点就可以完成了,最后还是放弃了...自己的理想
2024/11/2 1:06:49 17KB A星 A* 寻路 a*
1
共 528 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡