本书将着重介绍高层次综合(HLS)算法的使用并以此完成一些比较具体、细分的FPGA应用。
我们的目的是让读者认识到用HLS创造并优化硬件设计的好处。
当然,FPGA的并行编程肯定是有别于在多核处理器、GPU上实行的并行编程,但是一些最关键的概念是相似的,例如,设计者必须充分理解内存层级和带宽、空间局部性与时间局部性、并行结构和计算与存储之间的取舍与平衡。
2024/12/31 2:28:42 20.52MB FPGA 并行编程 HLS
1
程序简单,信号处理之后效果非常好,随机共振在用于微弱信号强噪声背景下非常的使用。
程序下载后即可在MATLAB上进行仿真
2024/12/27 13:26:14 4KB 随机共振 非线性双稳态 信号处理
1
本文对数字调制中的2FSK采用matlab进行了仿真实验,代码中没有加入噪声,采用相干解调的解调方式。
(一)、代码的流程如下:(1)、设置载波频率,码元频率(本文中即比特率)和采样率;
(2)、产生2FSK信号;
(3)、信号分别经过两个带通滤波器后得到band_passed_sig1和band_passed_sig2;
(4)、对band_passed_sig1和band_passed_sig2分别进行相干解调,再分别进行低通滤波得到lower_sig1和lower_sig2;
(5)、对lower_sig1和lower_sig2进行抽样判决得到输出信号;
(6)、统计无码率;
(二)、2FSK进行matlab仿真的疑难点:(1)、相干解调采用的“同频同相的载波”的获取。
由于信号经过带通滤波器之后(本文采用的是FIR线性相位数字滤波器)会出现相移,所以不能直接用调制时候的载波信号与此时的band_passed_sig1信号相乘来相干解调,此时用来相干解调的载波应该与经过滤波器之后出现相移的“载波”信号同频同相,本文代码中直接采用band_passed_sig1.*band_passed_sig1的方式进行相干解调,这点需要读者细心斟酌一下(其实不难理解的)。
(2)、抽样判决的判决时刻选择。
据笔者观察,经过低通滤波器之后得到的信号会出现时移(延时)的情况,建议读者可以先设置10个码元个数,观察一下低通滤波器的输出波形,然后再选择波形峰值时刻作为抽样判决时刻。
本文的代码中是采用每一个码元的结束时刻作为抽样判决时刻,这是笔者通过观察低通滤波器的输出波形后得到的,不具有通用性。
时移的原因,笔者觉得是因为FIR数字滤波器的线性相位所导致的,但是怎么个时移法,笔者目前还没有弄明白(数字信号处理学的不够好),还有待探究。
2024/12/27 13:52:15 2KB FSK matlab
1
PSO比较有潜力的应用包括系统设计、多目标优化、分类、模式识别、调度、信号处理、决策、机器人应用等。
其中具体应用实例有:模糊控制器设计、车间作业调度、机器人实时路径规划、自动目标检测、时频分析等。
2024/12/25 16:22:32 7.46MB 粒子群优化
1
非常全的《统计信号处理基础-估计与检测理论》课后答案,英文手写影印版。
2024/12/24 2:20:21 9.97MB 统计信号处理
1
傅里叶变换运算类,C#代码,虚拟示波器频谱图傅里叶变换计算类,快速FFT算法,数字信号处理,频率分布计算。
2024/12/23 9:21:56 19KB FFT
1
本资源是现代数字信号处理理论及算法(何子述版)的作业仿真第八章的代码
2024/12/22 18:39:40 5KB 现代DSP 何子述版 作业仿真 第八章
1
课程设计的题目:基于MATLAB的语音信号分析及滤波。
课程设计的内容:录制一段个人自己的语音信号,并对录制的信号进行采样;
画出采样后语音信号的时域波形和频谱图;
给定滤波器的性能指标,采用窗函数法和双线性变换设计滤波器,并画出滤波器的频率响应;
然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化;
回放语音信号;
最后,设计一个信号处理系统界面。
课程设计的要求:1.完成语音信号的采集,利用windows自带的录音机或其他软件,录制一段语音,时间在1s以内;
2.进行语音信号的频谱分析;3.进行数字滤波器的设计,滤波器的性能指标可以根据实际情况作调整,要求用窗函数法和双线性变换法设计以下三种数字滤波器:(1)低通滤波器性能指标Hzfb1000=,Hzfc1200=,最小衰减dBAs100=As10dB=,最大衰减dBAp1=;
(2)高通滤波器性能指标Hzfs4800=,Hzfb5000=,最小衰减dBAs100=,最大衰减;
dBAp1=(3)带通滤波器性能指标Hzfb12001=,Hzfb30002=,Hzfc10001=,最小衰减Hzfc32002=dBAs100=,最大衰减;
dBAp1=4.对语音信号进行滤波处理;5.对滤波前后的语音信号频谱进行对比,并对设计结果进行独立思考和分析;6.在基本要求的基础上,学生可以根据个人对该课程设计的理解,添加一些新的内容,如设计系统人机对话界面。
2024/12/15 21:53:47 1.02MB 课程设计 MATLAB 语音信号分析 滤波器
1
本书是作者历时近一年撰写的反映Xilinx最新可编程技术的著作。
编写过程中感触颇多,愿与广大读者一起分享这些心得:(1)当Xilinx将ARM公司的双核Cortex-A9处理器嵌入到FPGA芯片内,并结合最新的28nm工艺,制造出全新一代的可编程SoC平台后,取名叫EPP(ExtensibleProcessingPlatform,可扩展的处理平台),后来又改成AllProgrammable平台。
在这个名字变化的过程中,反映了Xilinx给这个最新Zynq设计平台的定位—侧重于嵌入式系统的应用,未来的可编程逻辑器件向着嵌入式处理方向发展,未来的嵌入式系统“硬件”和“软件”将根据应用的要求,真正变成AllProgrammable(全可编程),即可以在单芯片内设计满足特定要求的硬件平台和相应的软件应用。
在这个全可编程的实现过程中,体现着软件和硬件协同设计、软件和硬件协同调试、软件的串行执行和硬件逻辑的并行执行完美结合、未来的嵌入式系统是“积木块”的设计风格等设计思想。
这些设计理念将在Zynq-7000平台上由理想变成实现。
(2)Zynq-7000器件是最新半导体技术、计算机技术和电子技术的一个结合体。
在一个小小的半导体硅片上却集成了当今最新的信息技术。
基于Zynq-7000平台进行高性能的嵌入式实现,需要微电子、数字逻辑、嵌入式处理器、计算机接口、计算机体系结构、数字信号处理等相关的知识。
Zynq-7000是一个比较复杂的系统,是对一个设计者的基础理论知识和系统级设计能力的一个真正的考查。
在这个平台上实现嵌入式系统的应用,体现着自顶向下的一体化设计理念。
(3)Zynq-7000平台是非常好的教学平台、科研平台和应用平台。
作为教学平台,可以在这个平台上实现全过程的计算机相关课程的教学,使学生可以清楚地看到每个实现的具体过程。
这样,学生就可以真正地理解嵌入式系统的内涵;
作为科研平台,从事嵌入式相关技术研究人员,可以在这个全开放的平台上,将算法进行高性能的实现。
并且,可以在这个平台上实现设计性能分析等研究;
作为应用平台,该平台的应用将进一步提高嵌入式系统的灵活性和可靠性、大大降低设计成本,提高产品的市场竞争力。
全书共分23章,为了更好地帮助读者学习和掌握Zynq平台的设计原理和实现方法,按照Zynq-7000基础理论、Zynq-7000体系结构和Zynq-7000设计实践进行了详细的介绍。
(1)Zynq-7000基础理论篇详细介绍了学习Zynq-7000平台需要的基础理论知识。
(2)Zynq-7000体系结构篇详细介绍了Zynq-7000内的处理器系统、可编程逻辑系统、互联结构和外设模块等。
(3)Zynq-7000设计实践篇,详细介绍了基于Zynq全可编程平台的不同设计实例。
本书所给出的设计实例代表着Zynq的应用方向,在介绍这些设计实例的过程中,贯穿了很多重要的设计方法和设计思路,这些设计方法和设计思路比设计案例本身更加重要。
为了便于读者学习,本书还配套提供了相关设计的完整工程文件及教学课件等资源。
2024/12/14 13:32:20 81.68MB XILINX  ZYNQ-7000   SOC设计指南
1
软件无线电平台GNURADIO中信号处理模块的搭建,用C++写了个简单的信号处理实验,对于入门的童鞋可以实现快速的搭建自己模块。
2024/12/13 11:21:15 184KB GNURADIO
1
共 811 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡