googleEfficientDet算法中文版paper.将高效网络骨架与我们提出的BiFPN和复合尺度相结合,我们开发了一种新的对象检测器家族,称为高效Det,它始终以比以前的对象检测器更少的参数和FLOP来获得更好的精度。
图和图形显示COCO数据集上的性能比较。
在类似的精度约束下,我们的有效DET使用的FLOP比YOLOv3少28倍,FLOP比RetinaNet少30倍,FLOP比最近基于ResNet的NAS-FPN少19倍。
特别是,在单模型和单测试时间尺度下,我们的高效Det-D7实现了最先进的53.7AP和52M参数和325BFLOP,在1.5AP的情况下优于以前最好的检测器,而在4倍小和使用13倍少的FLOP。
我们的高效DET在GPU/CPU上也比以前的检测器快4倍至11倍。
1
该工具箱主要用于商业用Matlab软件包使用。
Matlab的工具箱已经在不同的计算机体系结构编译和测试,包括Linux和Windows。
大部分函数可以处理的数据集可高达20,000或更多点的数据。
LS-SVMlab对Matlab接口包括一个适合初学者的基本版本,以及一个多类编码技术和贝叶斯框架的更先进的版本。
2023/7/30 3:43:08 1.49MB 最小二乘 支持向量机 MATLAB 核函数
1
yelp_review_full_csv数据集,是Yelp为了学习目的而发布的一个开源数据集。
它包含了由数百万用户评论,商业属性这是一个非常常用的全球NLP挑战数据集。
训练集总共650,000,测试集50,000,一共5个分类,每一种各有130,000训练样本,10,000个测试样例。
2023/7/29 7:34:58 187.06MB yelp数据集
1
本源码是阿里天池大赛的matlab实现源码,内含4个.m文件以及对应的数据集,属于个人在比赛过程中写下的部分核心代码,予以公开分享~
2023/7/28 22:37:14 178KB 阿里 天池 最后一公里 代码
1
培训关于批处理AI的分布式培训此仓库是有关如何使用BatchAI以分布式方式训练CNN模型的教程。
涵盖的场景是图像分类,但是该解决方案可以推广到其他深度学习场景,例如分段和对象检测。
图像分类是计算机视觉应用中的常见任务,通常通过训练卷积神经网络(CNN)来解决。
对于具有大型数据集的大型模型,单个GPU的训练过程可能需要数周或数月。
在某些情况下,模型太大,以致于无法在GPU上放置合理的批处理大小。
在这些情况下使用分布式培训有助于缩短培训时间。
在此特定方案中,使用Horovod在ImageNet数据集以及合成数据上训练ResNet50CNN模型。
本教程演示了如何使用三个最受欢迎的深度学习框架来完成此任务:TensorFlow,Keras和PyTorch。
有许多方法可以以分布式方式训练深度学习模型,包括数据同步和基于同步和异步更新的模型并行方法。
当前,最常见的场景是与同步更新并行的数据-这是最容易实现的,并且对于大多数用例而言已经足够。
在具有同步更新的数据并行分布式训练中,该模型在N个硬件设备之间复制,并且一小批训练样本被划分为N个微批次(参见图2)。
每个设备都
1
基于Kaggle竞赛数据,原始数据文件较大,故本数据集只选用了train.csv中的5万条样本作为模型训练集(train.csv.gzip),1万条样本作为模型测试集(test.csv.gzip)
2023/7/27 14:19:52 37.29MB boost kaggle
1
基于wifi指纹的室内定位,使用knn算法实现。
数据集来自六个ap的信号强度,最终的定位准确度可以达到接近于60%,具体的代码实现和算法说明以及系统的优缺点在论文中有详细阐述。
2023/7/27 12:39:14 3.33MB 基于wifi指纹 室内定位 knn
1
LDA贝叶斯算法实现的电商行业商品评论与情感分析案例,数据集主要涉及‘美的’品牌的评论
2023/7/27 7:21:15 8.95MB 评论数据集
1
该数据集包含了1,600,000条从推特爬取的推文,可用于情感分析相关的训练。
该数据集包含两个数据文件:测试集(test)和训练集(training)数据文件没有包含heading,从左到右分别是:(1)推文标注(polarity):0=负面,2=中立,4=正面(2)推文的id(3)时间:SatMay1623:58:44UTC2009(4)Query(lyx),如果没有query,数值为NO_QUERY.(5)发推的用户:robotickilldozr(6)推文内容
2023/7/27 4:48:01 86.3MB 文本分类 自然语言处理 NLP 情感分类
1
ISPRS官网数据集.zip
2023/7/26 18:09:33 207.92MB 点云
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡