大型网站架构演化 大型网站软件系统的特点 大型网站架构演化发展历程 初始阶段 应用服务和数据服务分离 使用缓存改善网站功能 缓存类型 本地缓存 分布式缓存 缓存产品 redis 业界主流 memcached 解决问题 数据库访问 使用应用服务器集群改善网站的并发处理能力 问题:负载均衡情况下session状态的保持? 解决方案: 基于DNS的负载均衡 反向代理 ngix JK2 数据库的读写分离 问题:读库与写库的数据同步 解决方案:不同的数据库都有自己的数据库的主从复制功能 使用反向代理与CDN加速网站响应 反向代理产品 ngix 使用分布式文件系统和分布式数据库系统 使用no-sql和搜索引擎 站内搜索 lucene nutch 分词器 no-sql库 mongodb hadoop 业务拆分 webservice restful 分布式服务 大型网站架构演化的价值观 核心价值:随网站所需灵活应对 驱动力量:网站的业务发展 网站架构设计误区 一味追随大公司的解决方案 为技术而技术 企图用技术解决一切问题大型网站架构模式 架构模式 分层 分割 分布式 分布式应用和服务 分布式静态资源 分布式数据和存储 分布式计算 集群 缓存 CDN 反向代理 本地缓存 分布式缓存 异步 冗佘 冷备份 主从分离,实时同步实现热备份 灾备数据中心 自动化 发布过程自动化 ant maven. 自动化代码管理 svn cvs github 自动化测试 loadrunner hudson. 自动化安全测试 自动化部署 自动化报警 自动化失效转移 自动化失效恢复 自动化降级 自动化分配资源 安全 密码和手机校验码 数据库中的密码加密后存->不可ni->md5 加密 子主题1 验证码 防止机器登录 对于攻击网站的XSS攻击,SQL注入,进行编码转换 对垃圾信息,敏感信息进行过滤 对交易转账等重要操作根据交易模式和交易信息进行风险控制 Sina微博的应用大型网站架构要素 功能 可用性 伸缩性 扩展性 安全性瞬时响应:网站的高功能架构 网站的功能测试 不同的视角 用户的视角 开发人员的视角 运维人员的视角 功能测试指标 响应时间 并发数 吞吐量 功能测试方法 功能测试 负载测试 压力测试 稳定性测试 web前端功能优化 浏览器优化 减少http请求 使用浏览器缓存 启用压缩 css上,js下 减少cookie传输,静态资源使用独立域名访问 CDN加速 反向代理 应用服务器功能优化 分布式缓存 缓存的原理 合理使用缓存 频繁修改的数据 没有热点的访问 数据不一致和脏读 缓存可用性 缓存预热 缓存穿透 缓存架构 jbosscache为代表的需要更新同步的分布式级缓存 以memcached为代表的不互相通信的分布式缓存 异步操作 使用集群 代码优化 多线程 资源复用 单例 对象池 数据结构 垃圾回收 存储功能优化 固态硬盘 RAID与HDFS万无一失:网站的高可用性 高可性的度量与考核 度量 考核 高可用的网站架构 高可用的应用 高可用的服务 高可用的数据 CAP原理 数据备份 失效转移 高可用网站的软件质量保证 网站发布 自动化测试 预发布验证 代码控制 自动化发布 灰度发布 网站运行临控 临控数据采集 临控管理永无止境:网站的可伸缩性 网站架构的伸缩性设计 不同功能进行物理分离实现伸缩 单一功能通过集群规模实现伸缩 应用服务器集群的伸缩性设计 http重定向负载均衡 DNS域名解析负载均衡 反向代理负载均衡 ip负载均衡 数据链路层负载均衡 负载均衡算法 分布式缓存集群的伸缩性设计 mem
2021/7/2 17:55:03 1.02MB 网站架构
1
目录推荐序前言第1章认识OracleRAC1.1RAC产生的背景1.2RAC体系结构1.2.1整体结构1.2.2物理层次结构1.2.3逻辑层次结构1.3RAC的特点1.3.1双机并行1.3.2高可用性1.3.3易伸缩性1.3.4低成本1.3.5高吞吐量1.4RAC存在的问题1.4.1稳定性1.4.2高功能1.5RAC软件1.5.1存储管理软件1.5.2集群管理软件1.5.3数据库管理软件1.6本章小结第2章搭建类似生产环境的RAC2.1搭建环境2.1.1RAC的物理结构2.1.硬件环境2.1.3软件环境2.2搭建存储服务器2.2.1安装Openfiler操作系统2.2.2Openfiler主界面2.2.3配置iSCSI磁盘2.3搭建数据库服务器2.3.1为服务器配置4个网卡2.3.2安装Linux操作系统2.3.3挂载iSCSI磁盘2.3.4配置udev固定iSCSI磁盘设备名称2.3.5配置服务器的图形化环境2.4RAC运行环境安装前检查2.4.1服务器检查2.4.2存储检查2.4.3网络检查2.5配置数据库服务器2.5.1安装软件包2.5.2修改系统参数2.5.3配置域名解析服务2.5.4配置hosts文件2.5.5创建组、用户和目录2.5.6设置环境变量2.5.7配置SSH用户等效性2.5.8配置时间同步服务2.5.9安装cvuqdisk包2.5.10CVU验证安装环境2.6创建ASM磁盘2.6.1安装ASMLib驱动2.6.2创建ASMLib磁盘2.7部署RAC2.7.1安装GridInfrastructure2.7.2安装DatabaseDBMS2.7.3创建ASM磁盘组2.7.4创建RAC数据库2.8测试RAC2.8.1连接方式测试2.8.2异常情况测试2.9虚拟机搭建RAC2.9.1虚拟机Xen简介2.9.2启动主机Xen内核2.9.3Xen虚拟机创建网络环境2.9.4创建Xen存储服务器2.9.5创建Xen数据库服务器2.10本章小结第3章Clusterware集群软件3.1GridInfrastructure架构3.1.1GI的特点3.1.2GI的应用3.1.3Clusterware的特点3.1.4Clusterware增强的特性3.2Clusterware磁盘文件3.2.1表决磁盘3.2.2集群注册表3.2.3本地注册表3.3Clusterware启动流程3.3.1启动流程3.3.2后台进程3.4Clusterware隔离机制3.4.1Clusterware心跳3.4.2Clusterware隔离特性IPMI3.4.3RAC隔离体系3.5网格即插即用3.5.1GPnP结构3.5.2GPnPprofile文件3.5.3mDNS服务3.6日志体系3.6.1ADR的特点3.6.2ADR目录结构3.6.3命令行工具ADRCI3.6.4Clusterware日志文件3.6.5ASM实例和监听日志文件3.6.6Database日志文件3.7本章小结第4章ASM存储软件4.1ASM简介4.1.1ASM的特点4.1.2ASM实例的功能4.2ASM磁盘组4.2.1ASM磁盘4.2.2共享ASM磁盘组4.2.3ASM逻辑结构4.2.4ASM故障组4.2.5ASM条带化4.3ASM文件4.3.1ASM文件类型4.3.2ASM别名4.3.3ASM文件模板4.4ASM数据结构4.4.1物理元数据4.4.2虚拟元数据4.5ASM操作4.5.1RDBMS操作ASM文件4.5.2ASM文件的分配4.5.3ASM区间读写特性4.5.4ASM同步技术4.5.5ASM实例恢复和Crash恢复4.5.6ASM磁盘组操作4.6ACFS集群文件系统4.6.1ACFS概述4.6.2ADVM动态卷管理4.6.3ACFS快照4.6.4ACFS的备份和恢复4.6.5ACFS同ASM整合4.7本章小结第5章RAC工作原理5.1单实例并发与一致性5.1.1数据读一致性与写一致性5.1.2多版本数据块5.1.3
2019/7/1 13:38:54 60.39MB oracle 11gR2 RAC
1
目录推荐序前言第1章认识OracleRAC1.1RAC产生的背景1.2RAC体系结构1.2.1整体结构1.2.2物理层次结构1.2.3逻辑层次结构1.3RAC的特点1.3.1双机并行1.3.2高可用性1.3.3易伸缩性1.3.4低成本1.3.5高吞吐量1.4RAC存在的问题1.4.1稳定性1.4.2高功能1.5RAC软件1.5.1存储管理软件1.5.2集群管理软件1.5.3数据库管理软件1.6本章小结第2章搭建类似生产环境的RAC2.1搭建环境2.1.1RAC的物理结构2.1.硬件环境2.1.3软件环境2.2搭建存储服务器2.2.1安装Openfiler操作系统2.2.2Openfiler主界面2.2.3配置iSCSI磁盘2.3搭建数据库服务器2.3.1为服务器配置4个网卡2.3.2安装Linux操作系统2.3.3挂载iSCSI磁盘2.3.4配置udev固定iSCSI磁盘设备名称2.3.5配置服务器的图形化环境2.4RAC运行环境安装前检查2.4.1服务器检查2.4.2存储检查2.4.3网络检查2.5配置数据库服务器2.5.1安装软件包2.5.2修改系统参数2.5.3配置域名解析服务2.5.4配置hosts文件2.5.5创建组、用户和目录2.5.6设置环境变量2.5.7配置SSH用户等效性2.5.8配置时间同步服务2.5.9安装cvuqdisk包2.5.10CVU验证安装环境2.6创建ASM磁盘2.6.1安装ASMLib驱动2.6.2创建ASMLib磁盘2.7部署RAC2.7.1安装GridInfrastructure2.7.2安装DatabaseDBMS2.7.3创建ASM磁盘组2.7.4创建RAC数据库2.8测试RAC2.8.1连接方式测试2.8.2异常情况测试2.9虚拟机搭建RAC2.9.1虚拟机Xen简介2.9.2启动主机Xen内核2.9.3Xen虚拟机创建网络环境2.9.4创建Xen存储服务器2.9.5创建Xen数据库服务器2.10本章小结第3章Clusterware集群软件3.1GridInfrastructure架构3.1.1GI的特点3.1.2GI的应用3.1.3Clusterware的特点3.1.4Clusterware增强的特性3.2Clusterware磁盘文件3.2.1表决磁盘3.2.2集群注册表3.2.3本地注册表3.3Clusterware启动流程3.3.1启动流程3.3.2后台进程3.4Clusterware隔离机制3.4.1Clusterware心跳3.4.2Clusterware隔离特性IPMI3.4.3RAC隔离体系3.5网格即插即用3.5.1GPnP结构3.5.2GPnPprofile文件3.5.3mDNS服务3.6日志体系3.6.1ADR的特点3.6.2ADR目录结构3.6.3命令行工具ADRCI3.6.4Clusterware日志文件3.6.5ASM实例和监听日志文件3.6.6Database日志文件3.7本章小结第4章ASM存储软件4.1ASM简介4.1.1ASM的特点4.1.2ASM实例的功能4.2ASM磁盘组4.2.1ASM磁盘4.2.2共享ASM磁盘组4.2.3ASM逻辑结构4.2.4ASM故障组4.2.5ASM条带化4.3ASM文件4.3.1ASM文件类型4.3.2ASM别名4.3.3ASM文件模板4.4ASM数据结构4.4.1物理元数据4.4.2虚拟元数据4.5ASM操作4.5.1RDBMS操作ASM文件4.5.2ASM文件的分配4.5.3ASM区间读写特性4.5.4ASM同步技术4.5.5ASM实例恢复和Crash恢复4.5.6ASM磁盘组操作4.6ACFS集群文件系统4.6.1ACFS概述4.6.2ADVM动态卷管理4.6.3ACFS快照4.6.4ACFS的备份和恢复4.6.5ACFS同ASM整合4.7本章小结第5章RAC工作原理5.1单实例并发与一致性5.1.1数据读一致性与写一致性5.1.2多版本数据块5.1.3
2019/7/1 13:38:54 60.39MB oracle 11gR2 RAC
1
OA办公系统的九大设计原则:1.整体性系统整体设计能有效的实现后台一体化管理,前端满足用户个性化需求,系统标准化程度高。
2.先进性软件采用的技术,将在相当长的时间内保证技术的发展能力,应具有良好便捷的升级能力,选用的硬件设备及操作系统、数据库产品、应用软件均具有先进性及成熟的技术与产品。
3.规范性遵循统一的国家规范公文格式和交换接口标准。
4.高效性系统提供对各类事务处理的高效性。
使对大容量数据的查询和更新等操作也在较短的时间内迅速完成。
对于大数据量的处理,也能高效地完成。
5.安全可靠性采用最成熟和应用最广泛的技术平台,支持身份认证技术、安全加密技术;
数据在传输过程和数据库中采用高加密技术,保证数据的安全性。
分不同的角色控制信息数据,采用横向和纵向结合的矩阵权限控制模式,保证企业的各种信息安全。
6.扩展性由于计算机和网络等领域技术发展十分迅速,应用环境,系统硬件及系统软件都会不可避免将被更新,系统的可扩充性及版本的兼容性,直接影响着应用系统和用户需求的发展和功能的提升。
因此,OA系统十分重视扩展性,能很容易地适应调整,扩充和删减;
另一方面,它还具有与其它系统的接口能力,利用各系统功能之长,进行优势互补。
7.适应性和灵活性在日常工作中,不可避免地需要进行机构及人员的调整,OA系统能提供充分的变更与扩展能力,适用机构及人员的调整。
OA系统还具有图形化工作流定义工具,系统管理员可在浏览器环境下任意调整或定义工作流程。
系统具有灵活的信息发布系统,用户可根据需要定制发布需要的新闻、通知。
8.易用性系统的设计尤其重视用户界面的友好性。
简洁大方、功能齐备、美观实用、提示准确。
9.健壮性OA办公系统的开发设计应该支持应用和数据库等多重负载均衡能力,支持附件服务器和数据库服务器分离技术,从而支持数万用户同时在线和同时操作的能力,不会因为用户数的增长或者信息量的增长,而导致系统响应能力下降。
如何分辨OA办公系统的优劣?设计原则是一个重要的评判标准。
优秀的设计原则能让OA办公系统脱颖而出,实现系统整体的高功能、高可用、可扩展,发挥出更强的协同办公能力。
而OA办公系统设计的九大原则,基本上包括了OA办公系统的功能指标,给项目开发和用户选型提供了有益的借鉴,对于中国OA办公系统的整体水平也能起到提升作用。
2016/6/2 13:45:38 29KB OA maven java SSM
1
nginx作为负载均衡器,所有请求都到了nginx,可见nginx处于非常重点的位置,如果nginx服务器宕机后端web服务将无法提供服务,影响严重。
为了屏蔽负载均衡服务器的宕机,需要建立一个备份机。
主服务器和备份机上都运行高可用(HighAvailability)监控程序,通过传送诸如“Iamalive”这样的信息来监控对方的运行情况。
当备份机不能在一定的时间内收到这样的信息时,它就接管主服务器的服务IP并继续提供负载均衡服务;
当备份管理器又从主管理器收到“Iamalive”这样的信息时,它就释放服务IP地址,这样的主服务器就开始再次提供负载均衡服务。
2017/4/6 16:57:49 45.38MB nginx keepalived 负载平衡 集群
1
6、Kubernetes-Service7、Kubernetes-存储8、Kubernetes-集群调度9、Kubernetes-安全10、Kubernetes-Helm及其它功能性组件11、Kubernetes-证书可用时间修正12、Kubernetes-高可用的K8S集群构建
2019/3/9 17:15:20 980MB K8S
1
mha(MasterHighAvailability)目前在MySQL多服务器(超过二台),高可用方面是一个相对成熟的处理方案。
2015/9/26 10:18:51 35KB mhamysql
1
作为IES套件的一部分,ChasysDrawIES构成了其主要的图形编辑器和绘画工具,证明了其高可用性和通用的图形处理功能。
在应用程序的主窗口中,邀请您通过选择要创建的项目类型来个性化工作表。
开源免费图像处理软件ChasysDrawIES中文版开源免费图像处理软件ChasysDrawIES中文版此外,这是第一个使您熟悉该工具所有功能的窗口,这些功能不限于基本图像格式:空白构图,打印构图,Web,CD或DVD标签动画,扫描图片,静态图标或光标,动画光标或画笔,捕获的视频或屏幕截图。
首先吸引眼球的肯定是以各种类型的元素组织的用户界面,这些元素使一键或两步访问工具的几乎所有功能。
ChasysDrawIESArtist通过合并通常在基本图形编辑器中不会出现的,主要集中于每个初始项目最终目的的一组过程而变得独创。
因此,您可以访问例如图标生成器,该图标生成器可用于设置图片格式,从而可以成功地将其用作应用程序图标。
如果您的项目专门用于打印,则可能会发现“分解颜色”过程很有用,该过程可从可分别编辑每个图像的图像渲染中分别提取CMYK颜色通道。
您可以使用超分辨率过程来借助启发式缩放或通过堆叠图像来创建高分辨率图像。
此外,其他方便的过程包括“焦点堆叠”,“序列缝合器”或“移动物体去除器”。
ChasysDrawIESArtist还包括一系列漂亮的教程,可以向您展示如何在动画中创建运动的错觉或协助您完善基于图层的设计技能。
如果算上额外的视频捕获,HTML打样或智能内容获取功能,那么显然ChasysDrawIESArtist可以绘制出复杂的图像。
2019/3/17 17:51:39 21.9MB 图像处理软件
1
文档详细引见了docker容器部署openstack高可用私有云平台。
需要学习openstack的可以参考下。
2018/9/21 2:08:11 5.7MB openstack docker-openstack
1
GP是一个分布式X86架构,是把多台X86服务器组合成一起做一个大的集群。
相比传统单机版的Oracle和MySQL,它的特点是使用比较多的服务器做海量数据处理。
一般在企业客户中,把X86服务器采集过来后会做上机安装,如果企业使用的集群规模比较大,比如国内客户最大的有将近128个节点,数据量有1PB。
在部署的时候,X86的服务器会非常多,有超过100台的服务器。
为了保证它整个集群的高可用、功能,在部署的时候一般是需要跨多个机柜。
(双机柜为一组的部署方式)对GP来说建议在部署的时候,把服务器放在多个机柜上面,如果企业客户机器非常多,往往是以两个机柜为一组。
对于X86服务器上架之后,接下来就要把X8
1
共 108 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡