本报告包括详尽完整的文本分类处理过程,包括语料库的处理、jieba分词、停用词无关词处理、词袋模型的构建(CHI值检验用于特征筛选、tfidf作为特征向量值)。
并用自编朴素贝叶斯以及sklearn包中的SVM进行了文本效果的检测,通过混淆矩阵和roc曲线展现了实现效果。
实验报告写的很详细,不懂的地方可以看报告以及看博客中的部分细节讲解。
2023/7/15 21:32:55 4.05MB 数据挖掘 文本分类
1
语音情感特征的提取和选择是语音情感识别的关键问题,针对线性预测(LP)模型在语音情感谱包络方面存在的不足。
本论文提出了最小方差无失真响应(MVDR)谱方法来进行语音情感特征的提取;
并通过人工蜂群(ABC)算法找到最优语音情感特征子集,消除特征冗余信息;
利用径向基函数(RBF)神经网络对CASIA汉语情感语料库中的4种情感语音即生气、平静、高兴、害怕进行实验识别。
实验结果表明,该方法比线性预测法有更高的识别率和更好的鲁棒性。
1
学术论文语料库,包含SCI论文各个部分的常用模板句式和讲解。
2023/6/29 6:30:31 1012KB 学术英语 SCI
1
提供一个matlab版本的基于hmm的数字语音识别程序,经过调试,有注释;
并且提供一个有40人的数字语音语料库;
很实用。
2023/6/14 0:25:17 5.34MB 语音识别 hmm matlab
1
主要是参考tesseract3.02官网的训练教程,再结合自己的摸索,材料里包含的批处理程序完成从tif训练文件的输入到trainedata语料库文件生成的全过程,带有详细的注释,材料包的样例可以帮助更好的了解训练,详细的可以参考我的博客http://blog.csdn.net/tuling_research/article/details/41091163
2023/6/10 16:08:02 1.6MB tesseract 3.02 训练
1
基于语音的性别识别基于语音的性别识别,使用:免费的ST美国英语语料库数据集(SLR45)梅尔频率倒谱系数(MFCC)高斯混合模型(GMM)数据集可以在上找到免费的ST美国英语语料库数据集(SLR45)。
它是提供的免费的美国英语语料库,其中包含10位说话者(5位女性和5位男性)的讲话。
每个说话者大约有350种话语。
理论语音特征提取此处使用梅尔频率倒谱系数(MFCC),因为它们可在说话者验证中提供最佳结果。
MFCC通常如下得出:进行信号(窗口摘要)的傅立叶变换。
使用三角形重叠窗口,将以上获得的光谱的功率映射到mel刻度上。
记录每个梅尔频率下的功率对数。
2023/5/29 20:06:48 18.1MB data-science machine-learning scikit-learn voice
1
这个链接是测试集,熬炼集请见我的资源本语料库由复旦大学李荣陆提供。
test_corpus.rar为测试语料,共9833篇文档;
train_corpus.rar为熬炼语料,共9804篇文档,两个预料各分为20个相同种别。
熬炼语料以及测试语料底子依据1:1的比例来松散。
使历时尽量即便注明来源(复旦大学盘算机信息与本领系国内数据库中间做作语言处置小组)。
文件较大(熬炼测试各50多兆),下载时请耐心期待。
2023/4/21 17:35:29 51.14MB 中文文本分类 文本分类语料
1
Ubuntu对于话数据集,能够用于多轮对于话熬炼语料库,内附Ubuntu对于话数据集的下载地址。
智能聊天,chatbot,熬炼对于话的语料库
1
BERT在Azure机械学习效率上此回购搜罗终端到终真个食谱以及的(双向编码器谈判来自变形金刚)用语言表白模子。
伯特BERT是一种语言展现模子,其特色在于能够实用捉拿语料库中深层以及怪异的文本关连。
在原始论文中,作者证明晰BERT模子能够很约莫地改编以构建用于许多NLP责任的最新模子,搜罗文天职类,命名实体识别以及下场解答。
在此堆栈中,咱们提供了条记本,使开拓人员能够从语料库中重新熬炼BERT模子,并微调现有的BERT模子以处置特意的责任。
此回购中提供了的扼要可快捷末了使用BERT。
预熬炼BERT预熬炼中的挑战将BERT语言展现模子预熬炼到所需的准确性水平是极其具备挑战性的。
下场,大大都开拓人员从在尺度语料库(譬如Wikipedia)上经由预熬炼的BERT模子末了,而不是重新末了熬炼它。
假如在与熬炼前步骤中使用的语料库相似的语料库上熬炼最终模子,则此策略下场很好。
然则,
2023/3/30 14:24:23 232KB Python
1
金融方面的常见词汇构成的词典/语料库,jieba.load_userdict()即可使用
2023/3/18 1:31:53 15KB NLP 语料库 jieba 分词词典
1
共 116 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡