在许多应用中都需要增强彩色图像的细节。
锐化蒙版(UM)是用于细节增强的最经典工具。
已经提出了许多通用的UM方法,例如,有理UM技术,三次模糊技术,自适应UM技术等。
对于彩色图像,这些算法分三个步骤:a)实施color2grey步骤;
b)基于亮度分量(LC)设计高频信息(HFI)提取方法;
c)利用HFI完成增强过程。
但是,仅使用LC的HFI可能会丢失色度分量(CC)的HFI。
提出了一种基于四元数的细节增强算法,既利用亮度又利用CC来提取彩色图像的细节。
设计该算法以解决三个任务:1)设计基于3Dvector旋转的四元数描述的彩色高频信息(CHFI)提取方法;
2)执行CHFI和灰色高频信息(GHFI)的有效融合策略;
3)设计了基于四元数的局部动态范围的测量方法,基于该方法可以确定所提出算法的增强系数。
该算法的功能优于其他许多类似的增强算法。
可以调整八个参数以控制清晰度,以产生所需的结果,从而使该算法具有实用价值。
2020/11/11 15:23:08 1.33MB Color texture; image enhancement;
1
武大遥感所的研讨成果之一,对遥感图像清晰度进行评价的方法
2020/11/11 16:24:09 1.2MB 清晰度 灰度 梯度
1
针对现有计算机视觉对交通路标识别的复杂性和不稳定性的问题,通过运用图像轮廓识别技术,提出了由全局特征到局部特征再到结构特征的多层次轮廓识别,在交通路标的识别过程中,分别构造了图像密度、外形度量、光滑程度和轮廓熵值4个层次的图像轮廓,同时结合Sobel算子和信息熵对交通路标图像进行了提取与分块处理。
通过实验仿真结果表明:在图像的提取过程中,交通路标图像随着其DMOS值的增大,图像的质量越差,清晰度越低,其NRSS值越小;
在图像的识别过程中,低通滤波器的大小设置为7×7,原图NRSS为0.7654,外形度量为1.3和2.4时,NRSS分别为0.3712和0.2667。
这种层次化的轮廓分析在路标的识别上具有较好的稳健性。
1
简约无广,打开软件后可以直接使用。
共有三种功能:压缩图片、缩放图片、裁剪图片。
(我觉得就压缩图片有点用…)支持批量压缩图片,不管你是选择质量压缩,还是大小压缩,都一定要把“保持分辨率”的功能开启,这样处理出来的照片没有那么模糊,清晰度还是可以的。
我在手机中找了一张图进行压缩,3.7MBM—649kb。
压缩后的图片清晰度还是非常不错的。
虽说开启“保持分辨率”的功能可以实现无损压缩,但是有的图片压缩后,放大看肉眼还是可以看见区别的,不过图片的整体清晰度还是不错的。
2017/10/14 20:34:38 3.85MB Lit图压缩 手机压缩 图片压缩 手机app
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡