人工智能/机器学习
2025/3/27 4:06:09 14.65MB 人工智能/机器学习
1
经典模型对应的python代码经典模型对应的python代码
2025/3/26 18:19:18 7.27MB python CNN SVM
1
Hands-On.Machine.Learning.with.Scikit-Learn.and.TensorFlowPDF与代码合集,亚马逊排名第一的机器学习与深度学习书籍
2025/3/22 8:24:52 55.02MB tensorflow 深度学习 神经网络 机器学习
1
过往当中,我们总是担心学习大数据既要掌握复杂的数学知识,也是熟悉编程技术。
但本次课程将颠覆你以往的概念,本次课程不但包含了数学统计知识的传授,也囊括了机器学习的实践案例,最重要的是所有课时都将利用轻松的场景,把专业晦涩的数据科学知识及商业应用内容用通俗易懂的方式传授给大家。
在本次课程中,所有实践案例将结合IBMSPSSModeler工具进行实现并提供样例学习,各位学员不需要花费大量时间去掌握一门新的编程语言,只需要通过图形化界面就能实现机器学习的常用算法,使大家能够把时间更加专注于商业问题的解决中。
2025/3/19 22:11:21 29.47MB spss
1
Houston 2013数据集是一个结合了高光谱成像(HSI)与激光雷达(LiDAR)技术的数据集,主要用于遥感与地理信息系统研究领域。
该数据集针对地理信息的精确分析,包含了丰富的空间维度信息和光谱维度信息,使得它在地表覆盖分类、城市环境监测、农业遥感等多个领域具有重要的研究价值。


具体来说,高光谱成像技术能够在连续的光谱波段范围内获取地物的光谱信息,HSI数据集因而包含了成千上万的光谱波段,能够反映出地物在不同波长下的反射特性。
这些信息对于识别和分类不同的地物类型,如植被、水体、人造地物等具有重要意义。


另一方面,激光雷达技术通过发射激光脉冲并测量反射回来的信号来获得地表的高精度三维结构信息。
LiDAR数据集通常包括地物的高度信息、形状细节以及地表粗糙度等特征,这些信息对于地形分析、建筑物建模以及树木高度测量等方面至关重要。


Houston 2013数据集将HSI与LiDAR数据集分别划分为测试集和训练集,这样的划分可以用于开发和评估地表分类和遥感影像解译算法。
在遥感影像解译中,测试集用于验证算法的准确性,而训练集则用于训练分类器或机器学习模型,使得模型能够学习如何区分不同的地物类别。


该数据集的文件名称列表揭示了数据集的结构,其中HSI_TeSet.mat和HSI_TrSet.mat分别代表了高光谱成像数据集的测试集和训练集,LiDAR_TeSet.mat和LiDAR_TrSet.mat分别代表了激光雷达数据集的测试集和训练集。
TeLabel.mat和TrLabel.mat则可能包含了对应测试集和训练集的标签信息,即每一块地物的具体类别标签。


在处理这些数据集时,研究者需要熟悉遥感影像分析的常用工具和方法,例如使用ENVI、ArcGIS、ERDAS Imagine等软件对HSI数据进行预处理和分析,以及使用Terrascan、LIDAR360等软件对LiDAR数据进行点云处理。
除此之外,深度学习方法,特别是卷积神经网络(CNN)在处理HSI数据中也显示出强大的能力,它可以自动提取和学习光谱特征,对于提高分类精度具有显著效果。


Houston 2013数据集通过提供两种不同的遥感技术所获得的综合数据集,为遥感领域的研究者提供了一个宝贵的实验平台,使得他们可以在此基础上开发和测试新的地表分类算法和模型,进而推动遥感技术在环境监测与分析中的应用与发展。
2025/3/18 14:41:47 13.69MB 数据集 LIDAR数据
1
主要是面向工业锂电池行业的机器视觉在线检测算法的研究,采用机器学习的方法,实现了现场检测的要求,程序可以正常运行。
2025/3/14 22:26:43 9.54MB 机器学习
1
聚类分析常用的人工数据集,包括:UCI:wine、Iris、yeast,还有4k2_far、leuk72_3k等数据集。
它们在聚类分析、数据挖掘、机器学习、模式识别领域经常用到。
2025/3/14 17:32:50 32KB 聚类数据 UCI
1
人工智能/机器学习
2025/3/13 15:36:15 14.86MB 人工智能/机器学习
1
机器学习全套课件和可运行python代码,机器学习新手入门必备!
2025/3/13 1:15:37 174.73MB 课件 机器学习
1
机器学习——支持向量机程序
2025/3/12 10:36:27 99.33MB 支持向量机
1
共 665 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡