对二阶自回归模型产生的信号的LMS算法与RLS算法收敛速度对比(Matlab版)
2024/10/27 10:05:57 3KB LMS matlab RLS
1
MATLAB工具包DEEPLEARNINGTOOLBOX(一)DeepLearningToolbox™提供了一个用于通过算法、预训练模型和应用程序来设计和实现深度神经网络的框架。
我们可以使用卷积神经网络(ConvNet、CNN)和长短期记忆(LSTM)网络对图像、时序和文本数据执行分类和回归。
2024/10/23 7:57:32 216.9MB 深度学习
1
广义线性回归分析matlab程序,可以运行,代码中有详细调用方法和例子
2024/10/19 8:24:23 2KB matlab 广义线性回归分析
1
第一阶段:这一阶段会学习MapReduce、Hive、HDFS、Yarn、Spark等计算框架的开发技术,以及Scala编程语言。
通过项目实践,你能快速掌握这些技术,获得数据开发、数据挖掘、机器学习等职位必备的基本开发能力。
第二阶段:这一阶段会学习FLume、Kafka、SparkStreaming、Flink/Storm、Zookeeper、HBase等计算框架的开发技术,以及大数据体系内的数据采集和数据仓库理论思想和技术实现。
通过项目实践,你能快速掌握这些技术,获得完整的大数据架构开发能力。
第三阶段:这一阶段会学习NLP文本相似度、中文分词、HMM算法、推荐算法CF、回归算法等应用与开发技术,整体认识商业项目-音乐推荐系统。
使用海量真实数据对大数据平台和算法进行应用实践,快速掌握大数据行业具有巨大价值的核心技术。
第四阶段:这一阶段会学习分类算法、聚类算法、分类算法-决策树、分类算法-SVM、神经网络+深度学习,深化前3阶段技术能力,初入机器学习领域。
通过对机器学习核心算法的强化练习,你将能完美胜任目前人才最紧缺的数据挖掘开发职位。
2024/10/13 15:34:27 128B 大数据 机器学习 数据挖掘
1
MATLAB源码集锦-基于SVM神经网络的上证开盘指数预测回归预测分析代码
1
《自适应控制》是一本专注于自适应控制系统理论、设计方法与实际应用的专业书籍。
自适应控制理论是一种工程控制理论,它通过让控制系统根据外部环境和内部状态的变化自动调整控制策略,以适应这些变化,达到提高控制性能的目的。
自适应控制系统通常具有以下几个主要特点:1.自适应能力:自适应控制系统能够检测系统性能的变化,并根据这些变化自动调整控制器参数,使得系统性能保持在最佳或者可接受的水平。
2.工程控制理论:自适应控制理论结合了经典控制理论与现代控制理论的优点,能够处理各种复杂和不确定的情况。
3.设计方法:自适应控制设计涉及理论分析与算法设计。
理论分析包括系统建模、稳定性分析等;
算法设计则包括自适应律的构造、参数估计、控制策略的制定等。
4.应用实例:书中将包含一系列自适应控制系统的应用实例,如工业过程控制、飞行器控制、机器人控制等,通过这些实例可以展示自适应控制技术的实际应用效果和价值。
书中内容涵盖以下主题:1.自适应控制系统简介:介绍自适应控制的基本概念、应用背景和研究动机。
2.实时参数估计:讨论在动态系统中实时估计参数的方法,如最小二乘法和回归模型的应用。
3.确定性自调谐调节器:探讨基于确定性模型的自调谐调节器设计,包括极点配置设计、间接和直接自调谐调节器的设计。
4.随机与预测性自调谐调节器:阐述如何设计基于随机模型和预测模型的自调谐调节器,如最小方差和滑动平均控制器的设计。
5.模型参考自适应系统(MRAS):介绍MRAS的设计原理和方法,以及如何应用Lyapunov理论和稳定性分析来保证自适应控制系统的稳定性。
6.自适应系统的属性:分析自适应系统的非线性动态特性和稳定性问题,以及间接离散时间自调谐调节器的分析方法。
7.随机自适应控制:研究自适应控制在随机环境中的应用,例如多步决策问题和双重控制策略的设计。
在自适应控制系统中,模型参考自适应系统(MRAS)和自适应控制系统(STR)是两种重要的体系结构。
MRAS通过比较系统输出与参考模型的输出来调整控制器参数,而STR则直接根据系统性能来调整参数。
这两种体系结构在实际应用中各有优势,可以根据不同应用场景和性能要求灵活选用。
在自适应控制系统的设计与应用中,工程师和研究人员需要对系统的稳定性进行深入分析。
稳定性分析能够确保系统在受到干扰或参数变化时仍能保持良好的控制性能。
其中,Lyapunov稳定性理论是自适应控制系统稳定性分析的重要工具之一。
此外,实际工程应用中,系统可能面临各种不确定性和干扰,自适应控制系统需要具备一定的鲁棒性来应对这些挑战。
鲁棒自适应控制是设计自适应控制系统时需要考虑的重要方面。
书中还会介绍一些自适应控制系统的扩展应用,例如在非线性系统中的应用,以及自适应控制与其他控制策略如预测控制的结合。
《自适应控制》是一本全面介绍自适应控制理论、设计方法和实际应用的专业书籍,旨在为自动化、计算机科学与技术及相关专业的学生和专业技术人员提供深入的学习资源。
通过本书,读者可以系统地学习自适应控制的相关知识,并了解其在现代工程技术中的重要作用。
2024/9/30 8:54:46 11.5MB adaptive control
1
目前LS-SVMlab工具箱用户指南包含了大量MATALAB中LS-SVM算法的实现,其中涉及分类,回归,时间序列预测和无监督学习。
所有的功能都已经用Matlab从R2008a,R2008b,R2009a测试,工具箱中参考命令都以打印字体书写。
2024/9/29 1:32:49 511KB 中文 库文件 最小支持向量机
1
多元回归分析程序可以有多个因子,输出相关系数值,根据相关系数大小选择因子,建立和显示预报方程,并输出历史拟合数据列表和历史误差值,通过Chart控件绘制拟合曲线,可用于气象、水文统计预报
2024/9/28 6:58:22 102KB 多元回归 VB.NET2010 Chart控件
1
使用逻辑回归进行MNIST手写字符识别的代码,PYTHON语言。
2024/9/28 5:02:36 17KB 逻辑回归
1
粒子群(PSO)优化的极限学学习机(ELM),用粒子群优化算法优化的极限学习机,可用于数据的回归和分类,实测比单纯的极限学习机精度高的多。
2024/9/26 13:02:24 71KB PSOELM ELM PSO 粒子群算法
1
共 489 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡