智能天线已成为当今无线通信领域的一大研究热点,它结合了天线阵列技术与信号空时处理,在系统设计中增加了空时处理的自由度,改善了系统功能,增加了系统容量及频谱利用率。
本文重点研究阵列天线信号处理中的自适应波束形成算法,它能利用传感器阵列实现增强有用信号并抑制干扰和噪声的目的。
移动无线通信基于LMS思维自适应波束形成算法研究,
2016/2/7 22:48:56 293KB 天线
1
问题描述:利用哈夫曼编码进行信息通讯可以大大提高信道利用率,缩短信息传输时间,降低传输成本。
但是,这要求在发送端通过一个编码系统对待传数据预先编码;
在接收端将传来的数据进行译码(复原)。
对于双工信道(即可以双向传输信息的信道),每端都需要一个完整的编/译码系统。
试为这样的信息收发站写一个哈夫曼码的编译码系统。
基本要求:一个完整的系统应具有以下功能:(l)I:初始化(Initialization)。
从终端读入字符集大小n,及n个字符和m个权值,建立哈夫曼树,并将它存于文件hfmtree中。
(2)C:编码(Coding)。
利用已建好的哈夫曼树(如不在内存,则从文件hfmtree中读入),对文件tobetrans中的正文进行编码,然后将结果存入文件codefile中。
(3)D:编码(Decoding)。
利用已建好的哈夫曼树将文件codefile中的代码进行译码,结果存入文件textfile中。
(4)P:印代码文件(Print)。
将文件codefile以紧凑格式显示在终端上,每行50个代码。
同时将此字符方式的编码文件写入文件codeprint中。
(5)T:印哈夫曼树(Treeprinting)。
将已在内存中的哈夫曼树以直观的方式(树或凹入表方式)显示在终端上,同时将此字符方式的哈夫曼树写入文件treeprint中。
实现提示根据题目要求把程序划成5个模块,设计成菜单方式,每次执行一个模块后返回菜单。
除了初始化(I)过程外,在每次执行时都经过一次读取磁盘文件数据。
这是为了如果在程序执行后一直没有进行初始化(I)过程,为了能使后面的操作顺利进行,可以通过读取旧的数据来进行工作。
比如:如果程序的工作需要的字符集和权值数据是固定的,只要在安装程序时进行一次初始(I)化操作就可以了。
再在次运行程序时,不管进行那项操作都可以把需要的数据读入到内存。
算法分析本程序主要用到了三个算法。
(1)哈夫曼编码在初始化(I)的过程中间,要用输入的字符和权值建立哈夫曼树并求得哈夫曼编码。
先将输入的字符和权值存放到一个结构体数组中,建立哈夫曼树,将计算所的哈夫曼编码存储到另一个结构体数组中。
(2)串的匹配在编码(D)的过程中间,要对已经编码过的代码译码,可利用循环,将代码中的与哈夫曼编码的长度相同的串与这个哈夫曼编码比较,如果相等就回显并存入文件。
(3)二叉树的遍历在印哈夫曼树(T)的中,因为哈夫曼树也是二叉树,所以就要利用二叉树的先序遍历将哈夫曼树输出。
[测试数据]根据实验要求,在tobetrans.dat中输入"THISPROGRAMISMYFAVORITE",字符集和其频度如下:字符 __ A B C D E F G H I J K L M频度 186 64 23 22 32 103 21 15 47 57 1 5 32 20字符 N O P Q R S T U V W X Y Z 频度 20 56 19 2 50 51 55 30 10 11 2 21 2
2021/11/10 18:15:21 4KB 课程设计 c/c++ 哈夫曼树 编码
1
正交频分复用(OFDM,OrthogonalFrequencyDivisionMultiplexing)技术可以出色的对抗抗多径衰落、消除码间干扰且具有极高的频谱利用率。
此外它还采用了快速傅立叶变换,大大降低了收发机的实现复杂度,因此被广泛地应用于HDSL、ADSL、DAB、HDTV、WLAN等领域中。
但是,目前OFDM技术还有很多关键问题没有得到有效解决,如对频偏敏感、高峰均功率比问题等,这些都限制了OFDM技术的近一步广泛应用。
本论文主要围绕自适应压扩法降低峰均功率比问题展开论述,并利用matlab软件完成了仿真。
主要做了以下工作:论文首先回顾OFDM发展历程,说明了该技术的优缺点,讲解了OFDM技术原理,介绍了OFDM信号的产生过程,并对OFDM信号的收发机制进行了仿真。
接着,给出峰均功率比的定义和分布,分析了产生高峰均值的原因,简要地介绍了其它预畸变方法,如限幅法,峰值加窗,传统的压扩技术。
最后,分析自适应压扩法降低PAPR的功能,并用matlab完成相关仿真。
2017/5/20 19:49:40 1.18MB 自适应压扩法 PAPR 峰均比 OFDM
1
如何在不泄露用户隐私的前提下,提高大数据的利用率,挖掘大数据的价值,是目前大数据研讨领域的关键问题。
具体而言,实施大数据环境下的隐私保护,需要在大数据产生的整个生命周期中考虑两个方面:如何从大数据中分析挖掘出更多的价值;
如何保证在大数据的分析使用过程中,用户的隐私不被泄露。
本论文将围绕下图所示的大数据隐私保护生命周期模型展开。
2019/10/25 5:36:37 483KB HADOOP 安全 大数据安全
1
云计算因为能够提供虚拟化的资源池、弹性的服务能力、自助服务等,深得CIO们的青睐,为了提高企业IT设备的利用率,提高服务容灾的能力,提高对业务支撑的快速响应能力,大多数的企业都开始尝试企业私有云的建设。
一般来说,从现有的IT管理体系过渡到私有云平台,大致需要几个步骤:数据大集中、业务系统整合、IT资源的虚拟化、管理平台云化、云服务提供。
(很多人认为私有云就是信息中心的建设,其实信息中心的虚拟化改造一般是最后两个阶段合并为信息中心的统一运维管理平台,而不一定会提供云服务,因而,不能称为严格意义上的私有云。
)这个过程中,资源虚拟化是关键,因为只有资源都虚拟化管理,才可以谈得上动态的调配,才能够提
1
新时代下,随着经济、环境、政策的新变化,医疗保障领域的宏观决策难度更大、要求更高。
因此,国家医疗保障局规划了“宏观决策大数据应用子系统”,希望针对医疗保障体系中存在的数据标准不统一、数据源割裂、数据量利用率低等问题,在统一的数据标准之上,提供全面丰富的指标和分析维度,支持多场景多维度的实时展示和运行情况分析,使决策者能看清过去,洞悉隐藏在现象背后的规律与本质,进而展望未来,协助决策者及时识别中长期政策风险,测算政策调控带来的影响,为政策决策制定提供量化分析支持。
2018/6/26 9:49:56 22.49MB 大数据 医保
1
在本文中,首先介绍GMSK、MSK原理,并对其产生方式进行理论分析;
然后,设计了一个GMSK、MSK调制解调系统。
最后,利用SIMULINK仿真分析在信道中加入高斯白噪声与不加高斯白噪声两种情况下调制波形的异同,其中还分析了各主要参数对调制的影响,同时将仿真结果与理论相比较,使研究愈加深入。
从而,加深对GMSK、MSK的认识和理解,为解决调制技术与移动通信技术的频谱利用率问题提供基础,对今后移动通信的研究具有积极的作用。
2017/10/5 1:43:23 1.08MB 调制技术
1
计算机网络期末试卷计算机网络重点部分:第一章:1.1网络发展的三个阶段1.2网络定义(地位平等,无主从之分)1.3分组交换的特征(化整为零,存储转发)优缺点第二章:2.1网络协议和网络体系结构2.2OSIInternet参考协议第三章:3.1模仿通信和数字通信3.2奈奎斯特公式和香农定理3.3数字信号编码(非归零、曼彻斯特、差分曼彻斯特)3.4数字调制(基本概念、脉码调制(模仿->数字))3.5数据同步方式(字符、位同步)第四章:4.1海明码、CRC4.2停-等协议、滑动窗口(顺序接收管道协议(回退n协议)、选择重传)4.3信道最大利用率:U=(L/B)/(L/B+2R)4.4HDLC(标志和采用插“0”技术)PPP(HDLC简化版)第五章:5.1分组交换技术(虚电路、面向连接、数据报)5.2逆向自学习(校园网)不能有环D-V外部网关协议L-S内部网关协议5.3IP协议:IP分组的格式、IP地址、字段含义5.4子网划分第六章:6.1传输地址6.2TCP三次握手6.3TCP报文段格式6.4UDP第七章:7.1主要应用层协议第八章:8.1LLC子层8.2MAC子层8.3CSAM原理1-坚持非-坚持P-坚持第九章:9.1网络安全威胁9.2数据加密和数字签名9.3非对称密钥体制9.4身份认证(PKI基本原理)
2020/3/10 12:05:19 39KB 计算机网络
1
为了节省信道资源,可以将多路不同速率、不同猝发时隙的数字信源复合为一路数据的异步数字复接器得到了广泛应用。
为了尽最大可能降低源包数据传输时延、提高信道利用率,提出了一种贪婪型异步动态数字复接器的设计方案,并给出了各路信源的优先级调度策略。
使用硬件描述言语对两种复接模型进行描述。
在不同物理帧和两种信源模式下,通过Modelsim对贪婪型动态复接器和虚拟信道复接器进行了仿真对比。
仿真结果表明,贪婪型动态复接的平均传输时延和时延抖动都优于虚拟信道复接,并能够更有效地节省信源缓存资源。
1
1、收款直接到账你的微信或者支付宝,不托管资金,不中转资金;
无时间、区域限制,跨行、跨省、跨地区,买卖资金3秒钟瞬间到账,帮商户有效提升资金回笼速度和利用率。
2、商户可配置多个账户,系统带有账户轮询,避免风控封号风险,可开代理;
3、支持支付宝扫码、支付宝H5、微信扫码支付;
4、无需上传二维码、在后台配置账号。
系统自动识别生成一个收款码;
5、强大的实时回调,手机端监控真正做到订单秒回调;
6、强大的后端可配置选项,可任意自己设置提醒文字内容、回调地址、通知地址等配置。
2016/6/17 16:29:57 2.09MB 个人免签 免签支付 支付宝 微信支付
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡