《电子测量技术基本》(张永瑞第三版)第6章相位差测量.pdf内容为PPT课件
1
资源里包括windows的iperf.exe、android系统安装的iperf.apk和iperf使用说明参数等内容。
Iperf是一个网络功能测试工具。
可以测试TCP和UDP带宽质量,可以测量最大TCP带宽,具有多种参数和UDP特性,可以报告带宽,延迟抖动和数据包丢失。
Iperf使用方法与参数说明参数说明-s以server模式启动,eg:iperf-s-chost以client模式启动,host是server端地址,eg:iperf-c222.35.11.23通用参数-f[kmKM]分别表示以Kbits,Mbits,KBytes,MBytes显示报告,默认以Mbits为单位,eg:iperf-c222.35.11.23-fK-isec以秒为单位显示报告间隔,eg:iperf-c222.35.11.23-i2-l缓冲区大小,默认是8KB,eg:iperf-c222.35.11.23-l16-m显示tcp最大mtu值-o将报告和错误信息输出到文件eg:iperf-c222.35.11.23-ociperflog.txt-p指定服务器端使用的端口或客户端所连接的端口eg:iperf-s-p9999;iperf-c222.35.11.23-p9999-u使用udp协议-w指定TCP窗口大小,默认是8KB-B绑定一个主机地址或接口(当主机有多个地址或接口时使用该参数)-C兼容旧版本(当server端和client端版本不一样时使用)-M设定TCP数据包的最大mtu值-N设定TCP不延时-V传输ipv6数据包server专用参数-D以服务方式运行iperf,eg:iperf-s-D-R停止iperf服务,针对-D,eg:iperf-s-Rclient端专用参数-d同时进行双向传输测试-n指定传输的字节数,eg:iperf-c222.35.11.23-n100000-r单独进行双向传输测试-t测试时间,默认10秒,eg:iperf-c222.35.11.23-t5-F指定需要传输的文件-T指定ttl值
2016/2/22 2:31:32 3.12MB iperf windows android 吞吐量测试
1
在实际测量中,常测量加速度信号,但需求获取的却是速度或位移信号,此时涉及到加速度信号的积分问题,本资源提供了频域内加速度信号积分的Matlab程序代码,频域内积分可减少零点漂移和噪声干扰。
2016/10/21 21:28:43 2KB Matlab 积分运算 频域 加速度
1
AD7705的C51程序/***********************************************************程序名称:16bitA/DAD7705驱动程序作者:shengtuo作者评价:测试过。
工业低速测量广泛使用收集整理:amo************************************************************/sbitAdClk=P1^3;/*AD7705时钟脉冲*/sbitAdDout=P1^4;/*AD7705数据输出的反相脉冲*/sbitAdDin=P1^5;/*AD7705数据输入脉冲*/#defineCH11/*AD7705输入通道IN1*/#defineCH22/*AD7705输入通道IN2*/#defineBIPOLAR0/*AD7705双极性输入*/#defineUNIPOLAR1/*AD7705单极性输入*/#defineAD_CLK_WIDTH1/*AD7705串口时钟脉冲宽度*//*AD7705软件延时*/
2017/11/12 3:19:26 50KB AD7705
1
随着可穿戴式健康监测技术的发展,新型心电传感器-织物电极成为人们关注的热点,本文对织物电极的皮肤-电极接触阻抗测量方法进行了综述。
首先介绍了织物电极的概念,分析了织物电极的皮肤-电极电化学界面、皮肤-电极电化学界面的等效电路和简化电路模型,得出了皮肤-电极接触阻抗的计算公式;其次,将皮肤-电极接触阻抗的测量方法归纳为直接测量法、参比测量法和模拟皮肤测量法三类,讨论了它们的测量原理和优缺点。
本文认为需将模拟皮肤测量法和真实皮肤测量法有机结合,才能有效评价织物电极的阻抗特性,为织物电极的功能评价和心电信号采集电路的设计提供重要依据。
最后,本文对织物电极待解决的问题进行了分析讨论。
2018/8/18 15:42:10 1.12MB 研究论文
1
2017年全国大学生电子设计竞赛H题远程幅频特性测量安装全国一等奖方案报告。
图文清晰,格式整齐,内容详实。
包括详尽的方案论证、理论分析与计算、电路与程序设计与测试结果。
1
上位机通讯采用蓝牙模块无线透传;
超声波测身高;
压力传感器&24位AD转换HX711测体重;
压力流量计&32内核自带12位AD数模转换测肺活量;
LCD触摸屏&flash&sd实现人机交互;
rc522模块读取/修正射频卡信息;
每个部分均有头文件和源文件,存于user文件夹下;
建议以此为参考,逐模块修正调试。
1
对于DDR源同步操作,必然要求DQS选通信号与DQ数据信号有一定建立时间tDS和保持时间tDH要求,否则会导致接收锁存信号错误,DDR4信号速率达到了3.2GT/s,单一比特位宽仅为312.5ps,时序裕度也变得越来越小,传统的测量时序的方式在短时间内的采集并找到tDS/tDH最差值,无法大概率体现由于ISI等确定性抖动带来的对时序恶化的贡献,也很难精确反映随机抖动Rj的影响。
在DDR4的眼图分析中就要考虑这些抖动因素,基于双狄拉克模型分解抖动和噪声的随机性和确定性成分,外推出基于一定误码率下的眼图张度。
JEDEC协会在规范中明确了在DDR4中测试误码率为1e-16的眼图轮廓,确保满足在Vcent周围Tdivw时间窗口和Vdivw幅度窗口范围内模板内禁入的要求。
2021/4/18 1:24:17 1.78MB DDR4 眼图
1
PID控制是最早发展起来的控制策略之一,是迄今为止最通用的控制方法。
目前大多数工业控制回路仍然应用着PID控制器或改进型PID控制器。
在PID控制中,控制效果的好坏完全取决于PID参数的整定与优化。
普通的PID控制在控制基本线性和动念特性不随时间变化的系统上控制效果不错,但是在控制非线性、时变的系统时,控制效果往往不佳。
温度控制具有非线性、大滞后、大惯性、时变性、升温单向性等特点,因此传统的PID控制无法对其实现有效的控制,智能PID开始应用于温度控制系统。
随着计算机技术和智能计算理论的发展,智能控制理论正越来越多的应用于PID控制器的功能改进中去。
模糊控制和神经网络各有优点,两者都能对PID控制器参数进行整定与优化,提高了PID控制器的控制功能。
  本文将模糊控制与神经网络结合起来,组成模糊神经网络对PID三个参数进行整定与优化,设计出了一种模糊神经网络PID控制器结构,在此基础上以DSP为处理器实现了具有自整定功能的PID温度控制系统。
系统主要包括:电源模块,采用TPS76833芯片进行电源转换;
温度电压测量模块,采用Ptl00温度传感器及其相应的测量电桥进行温度电压采集,应用DSP的模数转换单元将模拟量转换为数字量;
人机交互模块,运用DSP的I/O模块设计出一套键盘作为输入,LCD显示器采用点阵式液晶显示器MG.12232,与PC机的交互方面,采用支持RS.232标准的MAX一232作为驱动芯片,驱动DSP与PC机的串行通信;
温度控制模块采用控制量控制PWM波占空比信号的策略,输出占空比信号来控制功率模块的导通,达到控制温度的目的。
最后设计并实现了基于自整定PID控制器的温度控制系统的主要程序。
2020/6/3 4:32:06 3.01MB 控制器/处理器
1
根据分布式压缩感知理论,提出一种宽带协作频谱感知的方式。
该方式相比于以往的协作压缩频谱感知方式,认知用户传向融合中心的数据精简为压缩信号,各个压缩信号在融合中心进行融合重构,这样就减少传向融合中心的数据量,缓解融合中心的数据压力,并且可以提高信号重构的成功率。
同时,根据压缩抽样匹配追踪算法,提出一种联合压缩抽样匹配追踪算法。
该算法思想是通过加权融合测量样本、迭代重构原信号,以恢复共同的频谱支撑集,完成协作频谱感知。
仿真结果表明:与经典的DCS-SOMP算法相比,本文算法功能更优,所需的滤波器数更少。
1
共 942 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡