百度盘下载地址:https://pan.baidu.com/s/1wdlNJICg-Y4hhYWcS1XGMw提取码:116f高程拟合软件(GnssLevelHight)使用说明手册GnssLevelHight高程拟合软件提供了一套完好的高程拟合方法,可以满足高精度(优于5cm)的高程拟合要求。
2021/4/23 8:33:26 52KB 高程拟合软件 GnssLevelHig
1
百度盘下载地址:https://pan.baidu.com/s/1wdlNJICg-Y4hhYWcS1XGMw提取码:116f高程拟合软件(GnssLevelHight)使用说明手册GnssLevelHight高程拟合软件提供了一套完好的高程拟合方法,可以满足高精度(优于5cm)的高程拟合要求。
2017/10/10 13:26:47 52KB 高程拟合软件 GnssLevelHig
1
我的思路是这样的:最速下降法能找出全局最优点,但在接近最优点的区域内就会陷入“齿型”迭代中,使其每进行一步迭代都要花掉非常久的时间,这样长久的等待是无法忍耐的,不信你就在我那个程序的第一步迭代中把精度取得很小如:0.000000001等,其实我等过一个钟都没有什么结果出来。
再者我们考究一下牛顿迭代法求最优问题,牛顿法相对最速下降法的速度就快得多了,而且还有一个好处就是能高度逼近最优值,而不会出现死等待的现象。
如后面的精度,你可以取如:0.0000000000001等。
但是牛顿法也有缺点,就是要求的初始值非常严格,如果取不好,逼近的最优解将不收敛,甚至不是最优解。
就算收敛也不能保证那个结就是全局最优解,所以我们的出发点应该是:为牛顿法找到一个好的初始点,而且这个初始点应该是在全局最优点附近,这个初始点就能保证牛顿法高精度收敛到最优点,而且速度还很快。
思路概括如下:1。
用最速下降法在大范围找到一个好的初始点给牛顿法:(最速下降法在精度不是很高的情况下逼近速度也是蛮快的)2。
在最优点附近改用牛顿法,用最速下降法找到的点为牛顿法的初始点,提高逼近速度与精度。
3。
这样两种方法相结合,既能提高逼近的精度,还能提高逼近的速度,而且还能保证是全局最优点。
这就充分吸收各自的优点,扬长避短。
得到理想的结果了。
2021/8/24 8:13:46 3KB matlab 最速下降法 牛顿法
1
高斯过程(GP)模型是非参数贝叶斯回归的一种灵活方法。
然而,在大数据中使用GP模型的大多数现有工作都是为单变量输出时间序列定义的,称为单任务GPs(single-taskGPs,STGP)。
在此,利用GPs同时对多个相关单变量生理时间序列进行建模。
由此产生的多任务GP(MTGP)框架可以学习多个信号之间的相关性,即便它们可能以不同的频率采样,并具有针对不同间隔的训练集。
MTGPs可有效地学习了生理时间序列之间的相关性,从而提高了建模精度。
多任务高斯过程模型Matlab工具箱(包括多个例子)
1
改程序完满的实现了四段数码管显示测量信号的频率大小单位,可测量1hz-10MHZ的方波,正弦波,锯齿波,三角波,精度达到0.01
2018/9/24 22:45:15 44KB 频率计
1
改程序完满的实现了四段数码管显示测量信号的频率大小单位,可测量1hz-10MHZ的方波,正弦波,锯齿波,三角波,精度达到0.01
2018/9/24 22:45:15 44KB 频率计
1
计算定积分,在函数体中修正函数名和上下限以及误差精度。
matlab程序m文件。
2015/5/22 20:02:13 381B 复化梯形公式 积分计算 matlab
1
计算定积分,在函数体中修正函数名和上下限以及误差精度。
matlab程序m文件。
2015/5/22 20:02:13 381B 复化梯形公式 积分计算 matlab
1
N=512;A=zeros(N,N);B=zeros(N,N);forI=1:1:256J=1:1:256ImageNum=double(Image(I,J,1));A(I,J)=ImageNum/255;B(I,J)=0;endendfigure;imshow(A);pi=3.1415926;forI=1:1:NforJ=1:1:NR=rand(1,1);%生成一个元素在0,1之间均匀分布的随机矩阵RB(I,J)=A(I,J)*sin(R*2*pi);%平滑函数的傅里叶变换谱A(I,J)=A(I,J)*cos(R*2*pi);F(I,J)=A(I,J)+j*B(I,J);endEnd%限制振幅的动态范围,进步编码的精度F=fft2(F);%作二维快速傅里叶变换FFTMax=max(max(abs(F)));F=F/Max;A=real(F);B=imag(F);aIpha=0.5;%定义载波参数aIphaforI=1:1:NforJ=1:1:NXcos=(J-1)/127;A1(I,J)=cos(2*pi*aIpha*Xcos);B1(I,J)=sin(2*pi*aIpha*Xcos);endend%全息图数据区forI=1:1:NforJ=1:1:NHoIodata(I,J)=0.5+0.5*(A(I,J)*A1(I,J)+B(I,J)*B1(I,J));endEndM=512;N=512;%定义全息图的大小Hologram=zeros(M,M);S=M/N;%定义每个抽样单元大小forI=1:1:NforJ=1:1:NXa=(J-1)*S+1;Xb=J*S;Ya=(I-1)*S+1;Yb=I*S;forIx=Xa:1:XbforIy=Ya:1:YbHoIogram(Iy,Ix)=HoIodata(I,J);endendendendMax=max(max(HoIogram));HoIogram=HoIogram/Max;figure;imshow(HoIogram);%以下是用matlab分别计算函数各抽样点的傅里叶变换谱的幅角与模,并对各点的模归一化object=fft2(HoIogram);object=fftshift(object);%用matlab中的移谱函数fftshift()将频谱的低频成分移到中心,以避免再现时像分散在边缘object=abs(object);object=1000*object/max(max(object));figure;imshow(object);
2019/5/1 5:12:10 973B 数字全息
1
N=512;A=zeros(N,N);B=zeros(N,N);forI=1:1:256J=1:1:256ImageNum=double(Image(I,J,1));A(I,J)=ImageNum/255;B(I,J)=0;endendfigure;imshow(A);pi=3.1415926;forI=1:1:NforJ=1:1:NR=rand(1,1);%生成一个元素在0,1之间均匀分布的随机矩阵RB(I,J)=A(I,J)*sin(R*2*pi);%平滑函数的傅里叶变换谱A(I,J)=A(I,J)*cos(R*2*pi);F(I,J)=A(I,J)+j*B(I,J);endEnd%限制振幅的动态范围,进步编码的精度F=fft2(F);%作二维快速傅里叶变换FFTMax=max(max(abs(F)));F=F/Max;A=real(F);B=imag(F);aIpha=0.5;%定义载波参数aIphaforI=1:1:NforJ=1:1:NXcos=(J-1)/127;A1(I,J)=cos(2*pi*aIpha*Xcos);B1(I,J)=sin(2*pi*aIpha*Xcos);endend%全息图数据区forI=1:1:NforJ=1:1:NHoIodata(I,J)=0.5+0.5*(A(I,J)*A1(I,J)+B(I,J)*B1(I,J));endEndM=512;N=512;%定义全息图的大小Hologram=zeros(M,M);S=M/N;%定义每个抽样单元大小forI=1:1:NforJ=1:1:NXa=(J-1)*S+1;Xb=J*S;Ya=(I-1)*S+1;Yb=I*S;forIx=Xa:1:XbforIy=Ya:1:YbHoIogram(Iy,Ix)=HoIodata(I,J);endendendendMax=max(max(HoIogram));HoIogram=HoIogram/Max;figure;imshow(HoIogram);%以下是用matlab分别计算函数各抽样点的傅里叶变换谱的幅角与模,并对各点的模归一化object=fft2(HoIogram);object=fftshift(object);%用matlab中的移谱函数fftshift()将频谱的低频成分移到中心,以避免再现时像分散在边缘object=abs(object);object=1000*object/max(max(object));figure;imshow(object);
2017/1/5 5:10:15 973B 数字全息
1
共 970 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡