遗传算法和粒子群算法结合的matlab源码详细的正文
2019/10/23 4:13:16 5KB 遗传算法 粒子群算法 matlab
1
给出了范围是[1,16]的1600多个数据,这些数据都是随机无纪律出现,运用遗传算法来进行数据预测。
2015/1/23 6:03:51 27KB 遗传算法 数据预测
1
本算法用遗传算法和贪婪算法解决了背包问题,产生解得方法用贪婪算法,然后引入了一个错解的修复算法,搜索的时候用遗传算法。
保证了快速收敛和解的完备性。
包含源程序,算法介绍以及一份详细的报告,希望对读者有很大的协助
2016/4/23 14:32:25 57KB 遗传算法 贪婪算法 背包问题 matlab
1
车间调度成绩,用遗传算法实现,并给出源代码,希望对大家有用车间调度成绩,用遗传算法实现,并给出源代码,希望对大家有用
2017/10/25 13:54:02 3KB matlab 车间调度 遗传算法
1
《MATLAB神经网络43个案例分析》是在《MATLAB神经网络30个案例分析》的基础上出版的,部分章节涉及了常见的优化算法(遗传算法、粒子群算法等)与神经网络的结合问题。
《MATLAB神经网络43个案例分析》可作为高等学校相关专业学生本科毕业设计、研究生课题研究的参考书籍,亦可供相关专业教师教学参考。
《MATLAB神经网络43个案例分析》共有43章目录如下:第1章BP神经网络的数据分类——语音特征信号分类第2章BP神经网络的非线性系统建模——非线性函数拟合第3章遗传算法优化BP神经网络——非线性函数拟合第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优第5章基于BP_Adaboost的强分类器设计——公司财务预警建模第6章PID神经元网络解耦控制算法——多变量系统控制第7章RBF网络的回归--非线性函数回归的实现第8章GRNN网络的预测----基于广义回归神经网络的货运量预测第9章离散Hopfield神经网络的联想记忆——数字识别第10章离散Hopfield神经网络的分类——高校科研能力评价第11章连续Hopfield神经网络的优化——旅行商问题优化计算第12章初始SVM分类与回归第13章LIBSVM参数实例详解第14章基于SVM的数据分类预测——意大利葡萄酒种类识别第15章SVM的参数优化——如何更好的提升分类器的功能第16章基于SVM的回归预测分析——上证指数开盘指数预测.第17章基于SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测第18章基于SVM的图像分割-真彩色图像分割第19章基于SVM的手写字体识别第20章LIBSVM-FarutoUltimate工具箱及GUI版本介绍与使用第21章自组织竞争网络在模式分类中的应用—患者癌症发病预测第22章SOM神经网络的数据分类--柴油机故障诊断第23章Elman神经网络的数据预测----电力负荷预测模型研究第24章概率神经网络的分类预测--基于PNN的变压器故障诊断第25章基于MIV的神经网络变量筛选----基于BP神经网络的变量筛选第26章LVQ神经网络的分类——乳腺肿瘤诊断第27章LVQ神经网络的预测——人脸朝向识别第28章决策树分类器的应用研究——乳腺癌诊断第29章极限学习机在回归拟合及分类问题中的应用研究——对比实验第30章基于随机森林思想的组合分类器设计——乳腺癌诊断第31章思维进化算法优化BP神经网络——非线性函数拟合第32章小波神经网络的时间序列预测——短时交通流量预测第33章模糊神经网络的预测算法——嘉陵江水质评价第34章广义神经网络的聚类算法——网络入侵聚类第35章粒子群优化算法的寻优算法——非线性函数极值寻优第36章遗传算法优化计算——建模自变量降维第37章基于灰色神经网络的预测算法研究——订单需求预测第38章基于Kohonen网络的聚类算法——网络入侵聚类第39章神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类第40章动态神经网络时间序列预测研究——基于MATLAB的NARX实现第41章定制神经网络的实现——神经网络的个性化建模与仿真第42章并行运算与神经网络——基于CPU/GPU的并行神经网络运算第43章神经网络高效编程技巧——基于MATLABR2012b新版本特性的探讨
2018/5/7 15:26:16 11.77MB 神经网络 遗传算法 粒子群算法等
1
基于遗传算法的自动化立体仓库出入库货位分配优化研讨.pdf
2019/11/27 6:39:41 217KB 网络互联
1
Rosenbrock函数是一种典型的恶意函数,文档外面给出了一种遗传算法的优化方法。
2018/2/5 19:11:17 217KB 优化
1
MATLAB遗传算法单车场单车型有容量约束的多车VRP问题,解压后直接运转。
2017/6/12 23:17:38 6KB MATLAB 遗传算法 VRP
1
物流配送路径优化问题是一个NP(非确定多项式)问题,使用传统优化方法很难得到最优解或满意解。
为了很好地处理这个NP问题,本文建立了一个配送中心、多个顾客的物流配送数学模型,用自己改进的遗传算法加以分析求解并进行了实例验证,而且在物品的配送种类上取得了突破,不在只是针对单一品种,对物流企业实现科学快捷的配送调度和路径优化有实际意义。
2016/5/12 18:48:51 283KB 遗传算法 物流配送
1
在分析各种冗余时间之间作用机理的基础上,以列车旅行时间和列车到发站延误时间最短为优化目标,建立运行图冗余时间优化规划模型。
在此基础上引入遗传粒子群优化算法对模型进行求解,并用MATLAB仿真。
以虚拟运行时刻表为背景,通过合理设置列车运行干扰时间和仿真分析方案,对结果进行分析。
结果表明:用该模型和算法得到的规划方案相比较于固定比例方案,总延误时间短,列车在区间和车站的晚点次数少;相比较于遗传算法求解该模型的总延误时间短,总冗余时间设置多,但是列车在车站和区间的晚点次数少。
2018/4/26 4:09:07 635KB 论文研究
1
共 784 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡