没有加密,函数全公开,已优化。
输入开始日期,计划天数,自动显示甘特图。
根据项目完成的不同状态显示相对应的颜色,项目完成情况一目了然。
2024/5/22 15:52:35 82KB EXCL 甘特图
1
压缩包包含以下内容:100000秒以内的计时程序10秒的秒表4×4键盘矩阵控制条形LED显示8×8LED点阵屏显示数字8只数码管显示多个不同字符8只数码管滚动显示单个数字8只数码管滚动显示数字串8只数码管闪烁显示INT0中断控制LEDINT0中断计数INT0及INT1中断计数K1-K4分组控制LEDK1-K4控制LED移位K1-K4控制数码管加减演示K1-K4控制数码管移位显示K1-K4键状态显示LED模拟交通灯TIMER0与TIMER1控制条形LEDTIMER0控制LED二进制计数TIMER0控制单只LED闪烁TIMER0控制四只LED滚动闪烁TIMER0控制流水灯串行数据转换为并行数据从左到右的流水灯单只数码管循环显示0-9单片机与PC机串口通讯仿真单片机之间双向通信单片机向主机发送字符串定时器控制交通指示灯定时器控制数码动态显示定时器控制数码管动管显示左右来回的流水灯并行数据转换为串行数据开关控制LED开关控制报警器报警器与旋转灯按键发音按键控制8×8LED点阵屏显示图形按键控制定时器选播多段音乐播放一段音乐数码管显示4×4键盘矩阵按键数码管显示拨码开关编码演奏一段音阶用定时器设计的门铃用计数器中断实现100以内的按键计数甲机通过串口控制乙机LED闪烁继电器控制照明设备花样流水灯闪烁的LED
2024/5/22 7:40:51 1.81MB 单片机 C语言 基于8051 Proteus仿真
1
DS3231时钟显示,在4位时钟数码管上显示小时和分钟地址分配:时钟为4位共阴时钟数码管,74HC573驱动,接P0口(须接上接电阻)P20:74HC573片选,P21:小时十位位选;
P22:小时个位位选;
P23:时钟小数点位选;
P24:分钟十位位选;
P25:分钟个位位选。
P10:SCL;
P11:SDA;
P12:key1;P13:key2;P14:key3。
功能说明:key1:用来切换4位,切换到哪位,哪位就闪烁,此时可以用key2对闪烁位进行修改,修改好按key3键进行确认,完成时间的修改。
特点:DS3232SN计时准确,key2依赖于key1,key3依赖于key2,前者变化是后者变化的基础。
即若不处于修改状态,是没有办法修改的,若key2没有执行修改,key3是不能进行确认的。
这样可以保证误操作。
2024/5/22 2:51:18 4KB DS3231,时钟
1
内容简介编辑《android的设计与实现:卷i》是android应用开发工程师和android系统工程师进阶修炼的必读之作。
它由资深android内核专家亲自执笔,从源代码角度,系统、深入、透彻剖析android系统框架层(framework)的设计思想和实现原理,为android应用工程师和系统工程师解决实际工作中的各种难题提供了原理性的指导。
为了降低读者的阅读成本,《android的设计与实现:卷i》使用了大量简单的uml类图和序列图来展示类的层次结构和方法的调用流程,使读者能迅速读完《android的设计与实现:卷i》并领会其精髓!“android的设计与实现”系列丛书主要围绕android系统的四层结构展开,通过源代码来分析各层的设计思想与实现原理,卷i则主要是针对framework(框架层)的。
全书共12章,分为六个部分:基础篇(第1~2章)详细讲解了android的体系结构、源代码阅读和调试环境的搭建,以及整个框架的基础;
启动篇(第3~4章)深入分析了android启动过程的机制和实现原理,能帮助读者全面理解框架层系统服务的运行基础;
binder篇(第5~6章)着重分析了binder在native框架层和java框架层的机制和实现,能让读者深入理解进程间的通信模型;
消息通信篇(第7章)重点分析了android的消息驱动和异步处理机制,能让读者深入理解线程间的通信模型;
packagemanager篇(第8~9章)主要讲解了packagemanager的机制与实现,以及apk的安装方法与过程;
activitymanager篇(第10~12章)深入阐述了activitymanagerservice的运行机制、应用程序和进程的启动流程,以及进程管理机制。
《android的设计与实现:卷i》适合中高级的android应用开发工程师、android系统开发工程师、android系统架构师,以及负责对android系统进行调试和优化的工程师们阅读。
3前言编辑为什么要写《Android的设计与实现:卷I》  Android从2007年问世至今,不仅在各个应用领域发展得如火如荼,其图书市场也是一片“兴旺”,各个层次、各种类型的Android图书的需求都比较旺盛。
目前市场上已经有的图书主要分为以下三类:  针对AndroidSDKAPI使用的描述  针对Android系统架构各部分的描述  针对Kernel移植的描述  其中鲜有针对Android四层架构中某一层进行深入挖掘的图书,这让读者有一种只能窥其全貌,却不能独得一隅的遗憾。
  框架层是整个Android系统的灵魂,这一层起着承上启下的作用,是理解整个Android的关键,也是解决Android应用层Bug的关键。
要开发一款精品手机,就必须深入理解这一层。
  国际知名的手机厂商对手机品质有着近乎苛刻的要求,手机必须在严格的测试环境下运行数百小时无问题方可上市销售。
这期间出现的稳定性(ANR、Crash、Watchdog)、内存(OOM)、性能等问题都让人十分头痛。
这些问题主要来自于应用程序、Framework、Dalvik虚拟机、LinuxKernel、Driver以及Modem,其中相当大一部分问题源自对Framework的错误理解和使用。
举例如下:  解决KeyDispatchTimeout类型的ANR,需要熟悉ActivityManager、Input消息处理系统的机制。
  解决应用程序IDLE状态时发生的ANR,需要熟悉ActivityManager、Binder的运行机制。
  解决框架层的Watchdog问题,需要熟悉Android启动阶段开启的系统服务和Watchdog的运行机制。
  解决应用程序的性能问题,同样需要理解框架层的运行和调度机制。
  上述问题只是冰山一角,仅仅停留在使用SDKAPI的层次是不可能解决上述问题的。
因此,非常需要一本能深入挖掘框架层的专著。
  针对以上问题,编写“Android的设计与实现”系列丛书,对Android核心模块和主要问题进行深入分析。
其中卷I的主题是启动和通信,主要分析Android运行环境、PackageManager、ActivityManager、Binder和消息机制等核心模块。
卷Ⅱ的主题是资源和UI,主要分析ContentProvider、Resource、ViewSystem、WindowManager、SurfaceFlinger等核心模块。
  读者对象  《Android的设计与实现:卷I》主要分析了Android框架层主要部分的体系结构和实现原理,让读者对Framework有一个清晰的理解,并以此增强解决
2024/5/21 8:05:22 55.77MB Android 设计与实现 卷1 带完整书签
1
在系统运行的某一时刻,每个对象都处于某种状态中,该状态运行表示对象执行了前一个活动或动作的结果,它通常由其属性值和与其他对象的链接来确定。
2024/5/20 10:20:20 197KB 状态图
1
实现了回声状态网络,同时含有一维数据集和测试案例,代码运行在jupyternotebookpython3环境下
2024/5/19 22:45:39 406KB Echo State N
1
超长线状地下结构状态智慧感知理论与方法
1
新版本troubleshoot(文件大小4.14MB)在保留原有功能外,还增加如下功能:1、支持修改智能交换机的管理vlan2、支持修改智能交换机网口状态、速率、接口类型、vlan属性等配置注意:仅支持修改SW2.6(NAC3.8.0.3)及以上版本的智能交换机;
之前的交换机通过该版本扫描工具扫描时还是同以前一样,仅能设置IP和发现控制器IP。
2024/5/18 18:29:53 2.38MB troubleshoot SW NAC 交换机管理
1
混沌中国古代和古希腊都有混沌的神,古希腊神话中的神为,中国《》中记载了的故事。
混沌,又写作浑沌,指混乱而没有秩序的状态。
在哲学中,混沌指虚空,或者没有结构的均匀状态。
在非线性科学中,“混沌”这个词的含义和本意相似但又不完全一致,非线性科学中的混沌现象指的是一种确定的但不可预测的运动状态。
它的外在表现和纯粹的随机运动很相似,即都不可预测。
但和随机运动不同的是,混沌运动在动力学上是确定的,它的不可预测性是位移运动的不稳定性。
或者说混沌系统对无限小的初值变化和微扰也具有敏感性,无论多小的扰动在不断以后,也会使系统彻底替换原来的转换方向。
混沌现象是自然界中的普遍现象,天气变化就是一个典型的混沌运动。
混沌现象的一个著名表述就是:南美洲一只蝴蝶扇一扇翅膀,就可能会在发生一场一场飓风。
免责声明此仓储脚本仅用于学习研究,不保证其合法性,准确性,有效性,请根据情况自行判断,本人由此不承担任何保证责
2024/5/17 7:12:40 230KB JavaScript
1
本文通过研究Windows网络体系结构和防火墙核心封包过滤技术,采用NDIS中间层驱动和Winsock2SPI技术相结合的方案,实现了核心层和应用层的双重过滤,完成了Windows个人防火墙的设计与实现。
本防火墙在核心层模式下,使用NDIS中间层驱动程序,截获所有流经网卡的原始数据包,并根据用户界面针对核心层设置的安全规则进行过滤,在内核态实现了对IPv4协议和IPv6协议的数据包过滤控制,同时实现了基于状态自动检测的过滤,防御恶意扫描,如TCPSYN、TCPNULL、TCPXmas、UDP、ICMP扫描,防御ARP欺骗、IP欺诈。
在应用层模式下,基于Winsock2SPI符合Windows开放服务体系模式,本论文开发了分层服务提供者程序的动态链接库,实现了对Winsock网络通信的截获,向用户提供了对网络进程的实时监控,并根据用户界面针对应用层设置的安全规则进行过滤。
本防火墙程序是在Windows操作系统下,以VC6.0为平台、WindowsDDK3790.1830为开发工具、以MSDN为联机帮助文档联合进行开发,本防火墙向用户提供了友好的用户界面,经过实际测试,运行稳定,能够实时显示当前网络流量,有效地拦截恶意扫描,实时提供所有访问网络的应用程序的活动状态,并根据用户设置的本地安全策略,准确地过滤IPv4协议和IPv6协议的原始数据包,在正确配置本地安全策略的情况下,能有效地防御蠕虫、木马等病毒,同时,还能对恶意网站进行过滤设置,防止恶意程序注入,保护本地网络的安全。
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡