一、问题描述若要在n个城市之间建役通信网络,只福要架设n-1条级路即可.如何以最低的经济代价建设这个通信网,是一个网的最小生成树问题。
二、基本要求(1)利用克鲁斯卡尔算法求图的最小生成树。
(2)能实现教科书6.5节中定义的抽象数据类型MFSet.以此表示构造生成树过程中的连通分量。
(3)以文本形式输出生成树中各条边以及他们的权值.三、需求分析1、构造图结构。
2、利用克鲁斯卡尔算法求图的最小生成树。
3、完成生成树的输出。
2023/10/2 17:44:34 2KB 最小生成树问 克鲁斯卡尔算
1
该资源是一个新生入学分班问题算例的求解.该实算例一共包含了5个小题,层层递进.通过python调用pyomo,对5个小题分别进行了建模求解,是学习规划求解问题建模、pyomo代码编写的绝佳资料.该资源内问题描述为全英文,用bd翻译一下即可.对照查看,亦可提高英语水平.
2023/9/21 21:15:32 28KB 规划求解 pyomo python 分班问题
1
问题描述:每个员工的信息包括:编号、姓名、性别、出生年月、学历、职务、电话、住址等。
系统能够完成员工信息的查询、更新、插入、删除、排序等功能。
基本要求:排序:按不同关键字,对所有员工的信息进行排序;
查询:按特定条件查找员工;
更新,按编号对某个员工的某项信息进行修改;
插入,加入新员工的信息;
删除,按编号删除已离职的员工的信息。
1
1.问题描述设B是一个n×n棋盘,n=2k,(k=1,2,3,…)。
用分治法设计一个算法,使得:用若干个L型条块可以覆盖住B的除一个特殊方格外的所有方格。
其中,一个L型条块可以覆盖3个方格。
且任意两个L型条块不能重叠覆盖棋盘。
例如:如果n=2,则存在4个方格,其中,除一个方格外,其余3个方格可被一L型条块覆盖;
当n=4时,则存在16个方格,其中,除一个方格外,其余15个方格被5个L型条块覆盖。
2.具体要求输入一个正整数n,表示棋盘的大小是n*n的。
输出一个被L型条块覆盖的n*n棋盘。
该棋盘除一个方格外,其余各方格都被L型条块覆盖住。
为区别出各个方格是被哪个L型条块所覆盖,每个L型条块用不同的数字或颜色、标记表示。
3.测试数据(仅作为参考)输入:8输出:A2337788221376684115996104455091010121213001718181211131317171618141111151916162014141515191920204.设计与实现的提示对2k×2k的棋盘可以划分成若干块,每块棋盘是原棋盘的子棋盘或者可以转化成原棋盘的子棋盘。
注意:特殊方格的位置是任意的。
而且,L型条块是可以旋转放置的。
为了区分出棋盘上的方格被不同的L型条块所覆盖,每个L型条块可以用不同的数字、颜色等来标记区分。
2023/9/5 16:58:10 3KB L型 覆盖 棋盘
1
1.问题描述:针对某集合中的“人名”设计并实现一个哈希表。
任务要求:针对姓名信息进行初始化哈希表,可以进行显示哈希表,查找元素。
设计思想:哈希函数用除留余数法构造,用线性探测再散列处理冲突。
设人名为中国人姓名的汉语拼音的形式,有30个待入的人名,取平均查找长度的上限为2。
哈希表函数用除留余数法构造,用伪随机探测再散列法处理冲突。
2023/8/29 17:18:40 457KB 数据结构 姓名哈希表 C语言
1
问题描述图G=(V,E)的一个团是图G的一个完全子图,即该子图中任意两个相异的顶点都有一条边相连。
最大团问题就是要找出图G中顶点数最多的一个团。
基本要求(1)用回溯法来求解最大团问题。
(2)用分支限界法来求解最大团问题。
测试数据由读者给定若干连通图。
实现提示本课程设计的实现主要包括以下主要过程:(1)关于解的编码形式(对应顶点i的变量x[i]=1当且仅当顶点i属于找到的最大团)。
(2)设计合适的上界函数,即如何确定当前团最大顶点数的上界。
2023/8/28 8:12:35 3.15MB 最大团问题
1
[问题描述] 每个员工的信息包括:编号、姓名、性别、出生年月、学历职务、电话、住址等。
系统能够完成员工信息的查询、更新、插入、删除、排序等功能。
[基本要求](1)排序:按不同关键字,对所有员工的信息进行排序。
(2)查询:按特定条件查找员工。
(3)更新:按编号对某个员工的某项信息进行修改。
(4)插入:加入新员工的信息。
(5)删除:按编号删除已离职的员工的信息。
2023/8/25 13:23:25 256KB 数据结构 链表 员工管理系统
1
华南理工大学,最优控制模型的描述、建立、求解以及matlab实现,数据分析。
最优化课程课件。
2023/8/17 16:16:27 10.13MB optimal cont
1
问题描述:设计一个校园导游咨询程序,为来访的客人提供各种信息查询服务。
a.设校园平面图,所含景点不少于十个。
以图中各顶点表示校内各景点,存放景点名称,代号,简介等信息;
以边表示路径,存放路径长度等相关信息b.为来访客人提供图中任意景点相关信息的查询c.为来访客人提供图中任意景点的问路查询,即查询任意两个景点之间的一条最短的路径涉及的知识点:单源最短路径和2点间最短路径,即Dijkstra算法与Floyd算法
1
《基于fpga的嵌入式图像处理系统设计》详细介绍了fpga(fieldprogrammablegatearray,现场可编程门阵列)这种新型可编程电子器件的特点,对fpga的各种编程语言的发展历程进行了回顾,并针对嵌入式图像处理系统的特点和应用背景,详细介绍了如何利用fpga的硬件并行性特点研制开发高性能嵌入式图像处理系统。
作者还结合自己的经验,介绍了研制开发基于fpga的嵌入式图像处理系统所需要的正确思路以及许多实用性技巧,并给出了许多图像处理算法在fpga上的具体实现方法以及多个基于fpga实现嵌入式图像处理系统的应用实例。
  《基于fpga的嵌入式图像处理系统设计》对fpga技术的初学者以及已经具有比较丰富的设计经验的读者来说都有很好的参考价值,也将为从事基于fpga的嵌入式系统开发和应用的软硬件工程师和科研人员提供一本比较系统、全面的学习材料。
目录1图像处理1.1基本定义1.2图像形成1.3图像处理操作1.4应用实例1.5实时图像处理1.6嵌入式图像处理1.7串行处理1.8并行性1.9硬件图像处理系统2现场可编程门阵列2.1可编程逻辑器件2.1.1fpga与asic2.2fpga和图像处理2.3fpga的内部2.3.1逻辑器件2.3.2互连2.3.3输入和输出2.3.4时钟2.3.5配置2.3.6功耗2.4fpga产品系列及其特点2.4.1xilinx2.4.2altera2.4.3lattice半导体公司2.4.4achronix2.4.5siliconblue2.4.6tabula2.4.7actel2.4.8atmel2.4.9quicklogic2.4.10mathstar2.4.11cypress2.5选择fpga或开发板3编程语言3.1硬件描述语言3.2基于软件的语言3.2.1结构化方法3.2.2扩展语言3.2.3本地编译技术3.3visual语言3.3.1行为式描述3.3.2数据流3.3.3混合型3.4小结4设计流程4.1问题描述4.2算法开发4.2.1算法开发过程4.2.2算法结构4.2.3fpga开发问题4.3结构选择4.3.1系统级结构4.3.2计算结构4.3.3硬件和软件的划分4.4系统实现4.4.1映射到fpga资源4.4.2算法映射问题4.4.3设计流程4.5为调整和调试进行设计4.5.1算法调整4.5.2系统调试5映射技术5.1时序约束5.1.1低级流水线5.1.2处理同步5.1.3多时钟域5.2存储器带宽约束5.2.1存储器架构5.2.2高速缓存5.2.3行缓冲5.2.4其他存储器结构5.3资源约束5.3.1资源复用5.3.2资源控制器5.3.3重配置性5.4计算技术5.4.1数字系统5.4.2查找表5.4.3cordic5.4.4近似5.4.5其他方法5.5小结6点操作6.1单幅图像上的点操作6.1.1对比度和亮度调节6.1.2全局阈值化和等高线阈值化6.1.3查找表实现6.2多幅图像上的点操作6.2.1图像均值6.2.2图像相减6.2.3图像比对6.2.4亮度缩放6.2.5图像掩模6.3彩色图像处理6.3.1伪彩色6.3.2色彩空间转换6.3.3颜色阈值化6.3.4颜色校正6.3.5颜色增强6.4小结7直方图操作7.1灰度级直方图7.1.1数据汇集7.1.2直方图均衡化7.1.3自动曝光7.1.4阈值选择7.1.5直方图相似性7.2多维直方图7.2.1三角阵列7.2.2多维统计信息7.2.3颜色分割7.2.4颜色索引7.2.5纹理分析8局部滤波器8.1缓存8.2线性滤波器8.2.1噪声平滑8.2.2边缘检测8.2.3边缘增强8.2.4线性滤波器技术8.3非线性滤波器8.3.1边缘方向8.3.2非极大值抑制8.3.3零交点检测8.4排序滤波器8.4.1排序滤波器的排序网络8.4.2自适应直方图均衡化8.5颜色滤波器8.6形态学滤波器8.6.1二值图像的形态学滤波8.6.2灰度图像形态学8.6.3颜色形态学滤波8.7自适应阈值分割8.7.1误差扩散8.8小结9几何变换9.1前向映射9.1.1可分离映射9.2逆向映射9.3插值
2023/8/9 21:49:08 53.81MB FPGA 嵌入式 图像处理
1
共 115 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡