用调Q脉冲YAG:Nd激光的倍频辐射作激励光,对多模玻璃光纤中的背向受激布里渊散射(BSBS)的位相复共轭图象再现进行了初步的实验研究.实验结果表明,BSBS光对入射光的频移是38.6GHz,在BSBS的光束截面上带有与入射光为位相复共轭对应的再现图象.而且散射光与入射光的偏振相同.最后,对再现图象的质量问题进行了讨论.
2023/7/23 8:37:41 2.4MB 论文
1
具有亚纳秒响应时间的受激布里渊散射(SBS)在高功率下发生阈值,使其能够在高功率密度下应用。
当输入光的强度超过SBS时阈值时,通过SBS介质会发生强大的SBS过程,从而导致能量快速从泵传递到斯托克斯(Stokes),从而在输出能量中具有光学限制特性。
本文在Nd:YAG调Q激光系统中对SBS输出能量与输入功率密度之间的相关关系进行了数值模拟和验证。
结果表明,不仅输出能量表现出光学极限特性,而且通过改变介质或焦距也可以控制输出能量的钳制值。
2023/7/19 1:56:03 196KB 研究论文
1
提出了一种多普勒激光雷达测风灵敏度实时测量的方法,解决测风时因气溶胶时空变化引入的灵敏度测不准问题。
在多普勒测风激光雷达的接收系统中增加两个转动拉曼谱的接收通道,利用分光片和干涉滤光片分离提取大气的弹性散射谱和大气分子的转动拉曼谱,实时获取气溶胶后向散射比以测算灵敏度。
系统采用532.25nm波长的单纵模激光光源,探测出中心波长为531.3nm和528.7nm两个转动拉曼谱。
对系统进行了数值计算和模拟分析,结果表明在脉冲能量300mJ,望远镜口径270mm的条件下,可实时获取低空对流层(5~8km以下)的气溶胶后向散射比廓线,在线定标,提高了测风的准确度。
1
基于matlab的mie散射计算程序,主要针对球体
2023/7/10 6:24:18 424KB Mie散射 matlab
1
基于时域有限差分法/时域多分辨(FDTD/MRTD)混合方法研究了微粗糙光学表面与多体缺陷粒子的复合光散射问题。
建立微粗糙光学表面与掩埋多体粒子复合散射模型,利用DB2小波尺度函数的移位内插原理,将计算区域分别划分为MRTD和FDTD方法区域,推导出复合散射场,计算微粗糙光学表面中掩埋多体粒子的复合散射截面,并与矩量法的结果比较以验证该方法的有效性。
分析入射角、气泡粒子的个数、相对位置及深度等物性特征对微粗糙光学表面与掩埋多体粒子复合双站散射截面的影响。
上述结果为光学无损检测、光学薄膜、微纳米结构的光学性能设计等领域提供技术支持。
2023/7/9 22:57:55 10.48MB 薄膜 复合散射 光学表面 FDTD/MRTD
1
使历时域有限差分法FDTD阐发二维圆柱散射场下场
2023/5/3 4:29:39 5KB FDTD 圆柱 散射
1
电子背散射衍射本领及其使用,EBSD制样,测试以及相关的数据处置教程,
2023/4/29 21:06:11 49.59MB 背散射衍射
1
蒙特卡洛法模拟编写的盘算粒子的频频散射以及单次散射的比力
2023/4/26 15:30:51 77KB 12
1
一种使用受激布里渊散射(SBS)在时域中天平生顶波形的方式提出了一种声子寿命短的介质。
实际上,在多个情景下模拟发射脉冲声子寿命不合的媒体。
在试验中,FC-72以及HT-270在声子上有明显差距寿命,在试验中被行使。
无论是实际以及试验下场评释,中遴选声子寿命短的介质,顶部多少乎是一个平台,而顶部则是一个岑岭,一个平台而后遴选声子寿命长的介质。
2023/4/22 3:55:47 188KB Flat-top waveform in time
1
光在水中传布时受水的排汇传染以及水中微粒的散射传染而暴发衰减;因水的浊度变更,且水下拍摄时景深不一,导致水下患上到的图像雾化水暖以及色调倾向不合。
传统的去雾算法用于处置这些模糊水暖以及色差多变的图像时下场欠佳。
针对于该下场,提出基于亮通道色调赔偿与领悟的水下图像增强算法。
起首,基于亮通道对于原图像举行色调赔偿,患上到色调赔偿的图像;再对于色调赔偿的图像举行自顺应比力度拉伸患上到比力度高的明晰图像;末了付与多尺度领悟策略对于色调赔偿后的图像及比力度拉伸后的图像举行领悟。
下场评释,本文算法可普及使用于多种水飞腾质图像,且在无任何先验信息的前提下,能实用普及水下图像比力度战争衡图像色调。
2023/4/11 2:54:53 20.87MB 图像处理 水下图像 图像融合 亮通道
1
共 129 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡