手脸近距遮挡属于深度传感器应用中具有代表性的难点问题,针对该问题提出了一种综合利用颜色与深度信息的手势识别方法。
采用核模糊C-均值聚类,对手脸遮挡图像进行粗分割和灰度增强,实现手脸分离。
引入初始化水平集函数,处理聚类方法导致的手势区域像元缺失问题。
利用基于深度信息的梯度方向直方图(HOG)特征对手势进行分类识别。
通过采集不同人体手脸近距遮挡情形下的多种手势图像建立了样本数据库,进行了对比实验,实验结果验证了该方法的可行性和有效性。
本文方法能有效分离近距遮挡的手和脸,提取得到相对完整的手势信息,深度HOG特征能够对手势空间信息进行精确描述,具有比传统形状特征更准确的识别效果。
1
这是HaGRID手势识别数据集使用说明和下载,原文连接:https://panjinquan.blog.csdn.net/article/details/126725796,HaGRID数据集数量特别大,有716GB的大小,包含552,992个FullHD(1920×1080)RGB图像。
此外,如果帧中有第二只手,则某些图像具有no_gesture类。
这个额外的类包含123,589个样本。
数据分为92%的训练集和8%的测试集,其中509,323幅图像用于训练,43,669幅图像用于测试。
提供手势动作识别数据集,共18个手势类别,每个类别约含有7000张图片,总共123731张图片(12W+)提供所有图片的json标注格式文件,即原始HaGRID数据集的标注格式提供所有图片的XML标注格式文件,即转换为VOC数据集的格式提供所有手势区域的图片,每个标注框的手部区域都裁剪上去,并保存在Classification文件夹下可用于手势目标检测模型训练可用于手势分类识别模型训练
1
本书的第1章和第2章介绍了数字图像处理的基本概念和技术,后续几章介绍了数字图像处理和计算机视觉领域的几个应用实例,包括指纹识别系统、数字水印技术、条形码技术、印鉴鉴定系统、光学字符识别技术以及基于视觉的手势识别系统。
本书的最大特色在于,对识别技术中的大多数问题,不仅给出了关于算法的详细介绍,还给出了基于C/VisualC++6.0的实现代码,具有一定的扩展性。
有的实例还给出了不同方法的实现过程,以供读者选择。
本书可作为读者学习数字图像处理的教程,也可作为毕业设计或工程开发的参考书本书系统地介绍了图像处理与识别的基本原理、典型方法和实用技术。
全书共分12章,第1章~第6章是图像处理与识别的基础内容,包括图像科学综述、MATLAB语言图像编程、图像增强、图像分割、图像特征提取和图像识别;
第7章~第10章是图像处理与识别的工程实例,涵盖了医学图像处理、文字识别和自导引小车路径识别等应用实例,并结合理论算法,提供了大量MATLAB代码程序,以协助读者掌握如何使用MATLAB语言快速进行算法的仿真、调试和估计等方法。
第11章~第12章,是两个综合性较强的实例,分别是VisualC++实现的基于神经网络的文字识别系统和车牌定位系统。
2017/6/11 23:16:37 8.18MB Visual C++
1
简单背景下在线识别手势,可与零碎进行猜拳游戏
2022/9/7 12:23:47 55KB 手势 识别
1
实现1-5手势的图片识别,采用最基础的模板婚配方法。
需要的自己取
2022/9/6 5:22:54 52MB opencv
1
自己做的实时动态手势识别系统,可识别0-9十个阿拉伯数字手势。
Realease版,识别率我自己用70%,不熟悉的人可能低一些,环境最好选择室内,不可太暗。
有兴味的可以玩玩。
2022/9/5 19:16:32 6.1MB 动态手势识别 数字手势
1
近年来,手势识别的问题是由于难以利用多种计算方法和设备来感知人的手部运动。
因而,在本文中,我们解释了不同的算法来解释手势识别算法,因为它具有得到了很多关注。
我们可以使用手势在不触摸计算机屏幕的情况下与计算机进行交互,可以向计算机提供指令,因而在本文中,我们将介绍使用Kinect进行手势手势检测的方法。
我们正在使用手势识别的动态时间扭曲方法。
我们解释了一种有效的手势识别方法。
我们还使用了简单的K-NN分类器。
在这种方法中,我们使用了DTW(动态时间包装)对齐方式。
我们使用不同的算法和方法来解释有关手势手势识别结果的信息。
我们使用MPLCS算法来识别自由空中的手势并给出良好的结果,之后,我们还使用了MCC计算,该计算确定了重大运动的开始和结束目的,并忽略了未使用的信号。
因而,通过使用此算法,我们给出的手势重组结果要好于以前的所有结果。
2021/2/9 8:30:56 543KB DTW K-NN HCI MPLCS
1
近年来,手势识别的问题是由于难以利用多种计算方法和设备来感知人的手部运动。
因而,在本文中,我们解释了不同的算法来解释手势识别算法,因为它具有得到了很多关注。
我们可以使用手势在不触摸计算机屏幕的情况下与计算机进行交互,可以向计算机提供指令,因而在本文中,我们将介绍使用Kinect进行手势手势检测的方法。
我们正在使用手势识别的动态时间扭曲方法。
我们解释了一种有效的手势识别方法。
我们还使用了简单的K-NN分类器。
在这种方法中,我们使用了DTW(动态时间包装)对齐方式。
我们使用不同的算法和方法来解释有关手势手势识别结果的信息。
我们使用MPLCS算法来识别自由空中的手势并给出良好的结果,之后,我们还使用了MCC计算,该计算确定了重大运动的开始和结束目的,并忽略了未使用的信号。
因而,通过使用此算法,我们给出的手势重组结果要好于以前的所有结果。
2016/1/9 13:12:11 543KB DTW K-NN HCI MPLCS
1
手势识别,只需求OPENCV,采用YOLO4T和MOBILENET分类
2018/9/23 3:31:32 56.69MB CV
1
需求一款3d摄像头,项目基于qt5,通过深度图追踪人体手势
2020/3/20 14:30:43 11.69MB track
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡