counterlet变换,小波的多尺度变换的一种,可运转,不错
1
该程序用于计算信号复合多尺度陈列熵,matlab环境下程序
2019/10/26 5:37:39 3KB 复合多尺度排
1
是非下采样轮廓波变换NonsubsampledContourlet变换(NSCT)对应的工具包,可以直接运用toolbox中提供的函数做多尺度分析
2015/11/21 4:57:47 98KB NSCT NSCT t
1
多尺度小波变更和重构,并求重构之后的功率谱包络谱。
2022/9/4 17:13:05 2KB 小波变换 功率谱 小波重构
1
健康与心脏病患者心跳距离序列的多尺度反馈比分析
2022/9/4 0:58:19 843KB 研究论文
1
数据融合matlab代码自适应加权学习网络的轻量图像超分辨率王朝峰,李振和石军,“具有自适应加权学习网络的轻量图像超分辨率”,该代码基于依存关系的Python3.5PyTorch>=0.4.0麻木skimage意象matplotlibtqdm代码 gitclonegit@github.com:ChaofWang/AWSRN.git cdAWSRN抽象的近年来,深度学习已以出色的功能成功地应用于单图像超分辨率(SISR)任务。
但是,大多数基于卷积神经网络的SR模型都需要大量计算,这限制了它们在现实世界中的应用。
在这项工作中,为SISR提出了一种轻量级SR网络,称为自适应加权超分辨率网络(AWSRN),以解决此问题。
在AWSRN中设计了一种新颖的局部融合块(LFB),用于有效的残差学习,它由堆叠的自适应加权残差单元(AWRU)和局部残差融合单元(LRFU)组成。
此外,提出了一种自适应加权多尺度(AWMS)模块,以充分利用重建层中的特征。
AWMS由几个不同的尺度卷积组成,并且可以根据AWMS中针对轻量级网络的自适应权重的贡献来删除冗余尺度分
2018/6/1 12:43:36 3.95MB 系统开源
1
深层神经网络拥有更强特征表达能力的同时,也带来了优化难、训练成本高及梯度弥散等问题;参数数量的激增则导致模型过于臃肿,不利于其在挪动端及工业控制设备等算力弱、存储小的平台上的部署.针对这些问题,构建了一种融合空洞卷积和多尺度稀疏结构的轻量神经网络对图像进行特征提取,实现对带有彩色图形噪声且字符扭曲粘连严重的验证码图像的端到端识别.将包含100万张验证码图像的数据集按98:1:1的比例划分为训练集、验证集和测试集,逐批参与训练.实验结果表明,该网络在大大减少参数数量的同时,具有测试集上98.9%的识别成功率.
1
本书以作者在清华大学讲授“小波分析及其工程应用”课程的讲义为基础,深入浅出地阐述了小波的基本理论及其应用技术。
在努力保持小波理论数学严谨性的同时,着力从工程技术角度阐述小波技术及其应用。
旨在突破小波分析的数学障碍,显现其实用的本质。
让小波分析方法和傅里叶分析一样,成为一种基础的、普及的、容易被广大读者掌握和应用的数学工具。
主要内容包括:离散小波的构造,离散小波变换、快速实现算法及其在图像压缩和信号去噪中的应用;
连续小波变换及其局部化时频分析技术;
二进小波变换、快速算法及其在信号奇异性检测、信号表示、图像多尺度边缘提取和信号去噪中的应用;
小波包变换及其在信号去噪、特征提取和非平稳信号毛病诊断等领域中的应用;
区间上的B样条半正交小波及其在曲线多分辨表示和编辑中的应用。
  本书可以作为大学本科高年级和研究生的“小波分析及其应用”课程的教材,也可以供从事相关领域研究与应用的专业人士作为参考。
2020/6/10 12:04:19 8.38MB 小波
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡