首页 网络技术 网管软件     /    数据融合matlab代码-AWSRN:我们论文“具有自适应加权学习网络的轻型图像超分辨率”的PyTorch代码

数据融合matlab代码-AWSRN:我们论文“具有自适应加权学习网络的轻型图像超分辨率”的PyTorch代码

上传者: weixin_38633576 | 上传时间:2018/6/1 12:43:36 | 文件大小:3.95MB | 文件类型:ZIP
数据融合matlab代码-AWSRN:我们论文“具有自适应加权学习网络的轻型图像超分辨率”的PyTorch代码
数据融合matlab代码自适应加权学习网络的轻量图像超分辨率王朝峰,李振和石军,“具有自适应加权学习网络的轻量图像超分辨率”,该代码基于依存关系的Python3.5PyTorch>=0.4.0麻木skimage意象matplotlibtqdm代码 gitclonegit@github.com:ChaofWang/AWSRN.git cdAWSRN抽象的近年来,深度学习已以出色的功能成功地应用于单图像超分辨率(SISR)任务。
但是,大多数基于卷积神经网络的SR模型都需要大量计算,这限制了它们在现实世界中的应用。
在这项工作中,为SISR提出了一种轻量级SR网络,称为自适应加权超分辨率网络(AWSRN),以解决此问题。
在AWSRN中设计了一种新颖的局部融合块(LFB),用于有效的残差学习,它由堆叠的自适应加权残差单元(AWRU)和局部残差融合单元(LRFU)组成。
此外,提出了一种自适应加权多尺度(AWMS)模块,以充分利用重建层中的特征。
AWMS由几个不同的尺度卷积组成,并且可以根据AWMS中针对轻量级网络的自适应权重的贡献来删除冗余尺度分 本软件ID:18964499

文件下载

资源详情

[{"title":"(33个子文件3.95MB)数据融合matlab代码-AWSRN:我们论文“具有自适应加权学习网络的轻型图像超分辨率”的PyTorch代码","children":[{"title":"AWSRN-master","children":[{"title":".gitignore <span style='color:#111;'>12B</span>","children":null,"spread":false},{"title":"figs","children":[{"title":"Set5x2.png <span style='color:#111;'>33.04KB</span>","children":null,"spread":false},{"title":"RU.png <span style='color:#111;'>41.14KB</span>","children":null,"spread":false},{"title":"vis.png <span style='color:#111;'>3.32MB</span>","children":null,"spread":false},{"title":"results.png <span style='color:#111;'>486.10KB</span>","children":null,"spread":false},{"title":"AWSRN.png <span style='color:#111;'>78.87KB</span>","children":null,"spread":false}],"spread":true},{"title":"code","children":[{"title":".gitignore <span style='color:#111;'>761B</span>","children":null,"spread":false},{"title":"src","children":[{"title":"trainer.py <span style='color:#111;'>5.08KB</span>","children":null,"spread":false},{"title":"loss","children":[{"title":"vgg.py <span style='color:#111;'>1.07KB</span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'>4.54KB</span>","children":null,"spread":false},{"title":"discriminator.py <span style='color:#111;'>1.26KB</span>","children":null,"spread":false},{"title":"adversarial.py <span style='color:#111;'>3.24KB</span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"benchmark.py <span style='color:#111;'>649B</span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'>1.16KB</span>","children":null,"spread":false},{"title":"div2k.py <span style='color:#111;'>719B</span>","children":null,"spread":false},{"title":"srdata.py <span style='color:#111;'>7.00KB</span>","children":null,"spread":false},{"title":"demo.py <span style='color:#111;'>1.11KB</span>","children":null,"spread":false},{"title":"common.py <span style='color:#111;'>1.67KB</span>","children":null,"spread":false}],"spread":true},{"title":"model","children":[{"title":"awsrnv2.py <span style='color:#111;'>4.42KB</span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'>6.24KB</span>","children":null,"spread":false},{"title":"awsrn.py <span style='color:#111;'>5.65KB</span>","children":null,"spread":false},{"title":"awsrnd.py <span style='color:#111;'>6.05KB</span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'>0B</span>","children":null,"spread":false},{"title":"dataloader.py <span style='color:#111;'>5.14KB</span>","children":null,"spread":false},{"title":"option.py <span style='color:#111;'>7.16KB</span>","children":null,"spread":false},{"title":"template.py <span style='color:#111;'>1.11KB</span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'>1.31KB</span>","children":null,"spread":false},{"title":"demo.sh <span style='color:#111;'>5.03KB</span>","children":null,"spread":false},{"title":"utility.py <span style='color:#111;'>7.24KB</span>","children":null,"spread":false}],"spread":false},{"title":"experiment","children":[{"title":".gitignore <span style='color:#111;'>8B</span>","children":null,"spread":false},{"title":"Evaluate_PSNR_SSIM.m <span style='color:#111;'>9.15KB</span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"LICENSE <span style='color:#111;'>1.04KB</span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'>10.25KB</span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【好快吧下载】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【好快吧下载】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【好快吧下载】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,8686821#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明