###HellaTAS-71版本标定流程解析####一、概述HellaTAS-71版本标定流程文档详细介绍了如何对HellaTAS-71系列的小总成进行标定,确保其性能达到最优状态。
整个过程分为初始化、静态标定与动态优化三个阶段。
本文将深入探讨这些阶段的具体步骤和技术细节。
####二、初始化阶段在初始化阶段,主要任务是完成传感器的基本配置和准备。
具体步骤包括:1.**连接传感器**:将待标定的最小总成(传感器)连接至测试台。
2.**供电**:对连接好的传感器进行上电处理。
3.**软件准备**:通过调用`APS.dll`文件来实现以下功能:-**创建芯片目标**:为传感器的芯片创建一个目标对象,以便后续操作。
-**初始化芯片目标**:进一步配置芯片目标,如设置芯片参数等。
-**创建传感器目标**:基于芯片目标创建传感器目标。
-**设置编程参数**:根据需要设置传感器的编程参数。
此外,文档还特别指出,对于ASIC的不同命名(如ASIC1、ASIC2等)以及PGI2代通讯端口参数的设置需参照帮助文件。
这一阶段的目标是确保所有硬件设备都已正确连接,并且软件环境已经准备好,为后续标定流程打下基础。
####三、静态标定阶段静态标定阶段是在不受扭状态下进行的,目的是对传感器的基本输出特性进行校准。
该阶段主要包括以下步骤:1.**读取OTP位**:使用`APS.dll`中的函数读取传感器内部已烧写的OTP位串,并将其保存以便追溯。
2.**写入位串**:将读取到的位串写回传感器。
3.**信号检测与调整**:-检测T1、T2信号的频率和占空比。
-通过公式计算T1ROC和T2ROC值,并进行相应的调整。
-公式示例:\(T1ROC=(T1-50)÷75×12×3072÷20\),其中\(T1\)为当前T1信号的占空比。
-根据计算结果调整T1、T2信号,以确保其处于合理的范围内。
4.**角度信号的静态标定**:-读取P、S信号的占空比,并通过特定算法计算角度偏移值。
-调整角度信号,使其满足静态标定的要求。
此阶段通过多次调整和检测,确保传感器在不受扭状态下能够提供准确的输出信号。
####四、动态优化阶段动态优化阶段则是在传感器受到外部旋转力的情况下进行,旨在进一步优化传感器的性能。
具体步骤如下:1.**驱动伺服电机**:在不受扭的状态下,顺时针和逆时针旋转传感器360度,并记录下各个信号的变化情况。
2.**数据处理与分析**:-对采集到的数据进行平均处理,得到T1_AV和T2_AV的平均值。
-基于平均值再次计算ROC值,进一步调整信号。
3.**信号优化**:通过综合前两次ROC值和动态采集的ROC值进行信号优化,确保传感器在动态条件下的性能也达到最优。
####五、总结通过对HellaTAS-71版本标定流程的详细分析,我们可以看出整个标定过程不仅涉及硬件的连接与调试,还需要软件层面的支持与配合。
从初始化到静态标定再到动态优化,每个阶段都有明确的目标和细致的操作指南,确保传感器能够在各种条件下都能发挥最佳性能。
这对于提高产品的可靠性和稳定性至关重要。
2024/12/31 17:07:02 639KB Hella
1
网上很多nucleus的initial都不是arm汇编的,armulator上都跑不起来,这个的初始化代码是arm汇编的会用的兄弟可以拿它做armulator的OS使用,平常用来做嵌入式代码的单元测试,很方便的
2024/12/31 12:53:10 4.4MB RTOS nucleus arm汇编
1
###HP3PAR存储日常管理手册关键知识点解析####一、3PAR存储介绍**1.3PARInSpire架构**-**紧密集群化与多客户端设计**:3PARInSpire架构的设计核心在于解决传统整体式和模块化阵列的价格昂贵与扩展复杂的问题。
该架构允许用户按需购买与扩展,这意味着可以从一个小规模系统开始,随着业务需求的增长逐步添加更多的应用和工作负载,所有这些都在一个单一、自动化的分层存储阵列中实现。
-**内置ThinBuiltIn™的Gen3/Gen4ASIC**:3PARGen3/Gen4ASIC提供了一种高效、基于硬件的零检测机制,与3PAR自身的“精简引擎”协同工作,可以有效移除已分配但未使用的空间,同时不影响性能。
这一特性对于混合工作负载尤其重要,因为它可以显著提高虚拟机的密度,进而减少物理服务器的需求。
-**主动网格控制器技术**:3PAR的主动网格控制器技术是一种独特的设计,与传统的“active-active”控制器架构不同,在后者的架构中,每个LUN或卷只能在一个单控制器上处于活动状态。
而在3PAR的设计中,每个LUN在所有网格控制器上都是活动的,从而提供了更强大的负载均衡能力。
-**细粒度的虚拟化和宽条带化**:3PARInSpire架构通过大规模并行、细粒度的数据条带化来确保为所有类型的工作负载提供高级别的服务。
通过将物理磁盘划分为统一的256MB存储块,并根据RAID类型、驱动器类型、径向位置和条带宽度等参数自动选择和分组这些数据块,从而满足用户定义的性能、成本和高可用性要求。
这样的设计使得工作负载可以自动分配和重新平衡,确保了系统的高可用性和性能的一致性。
-**持续缓存**:持续缓存是一项弹性功能,它能够消除意外组件故障导致的性能损失,这对于维持虚拟数据中心的服务水平至关重要。
该功能能够在组件发生故障时继续提供服务,而不会出现性能下降。
####二、日常配置**1.添加主机Host**-添加主机是指将需要访问存储资源的服务器或计算节点加入到存储系统中。
通常涉及配置主机的IP地址、认证方式等信息,以确保主机能够安全地访问存储资源。
**2.创建CPG(CommonProvisioningGroup)**-CPG是一种存储池,它汇集了多个物理磁盘,并提供了统一的存储资源池。
创建CPG可以根据特定的性能和冗余需求定制存储策略。
**3.创建VV虚拟磁盘**-VV(VirtualVolume)是3PAR存储系统中的基本存储单元,类似于传统磁盘。
通过创建VV,用户可以根据实际需求定义存储容量、性能和冗余级别。
**4.分配VV虚拟磁盘**-分配VV指的是将创建好的虚拟磁盘分配给特定的主机或应用使用。
这一过程可能包括设置访问权限、加密选项等细节。
####三、日常维护**1.存储开机步骤**-开机步骤可能包括启动电源供应、初始化存储控制器、加载操作系统等。
确保按照正确的顺序执行这些步骤非常重要,以避免数据丢失或损坏。
**2.存储关机步骤**-关机步骤同样重要,通常包括卸载文件系统、停止存储服务、关闭电源等。
正确执行关机步骤有助于保护数据的安全性。
**3.存储日志Insplore收集**-Insplore是一种用于收集3PAR存储系统日志的方法。
收集这些日志对于监控系统健康状况、诊断问题和规划未来扩展非常重要。
**4.管理机SP日志SPLOR收集**-SPLOR是用于收集存储管理机(SP)日志的一种方法。
这些日志提供了关于存储系统管理层面的重要信息,有助于优化存储系统的管理效率。
**5.特定信息CLI命令行收集**-CLI(CommandLineInterface)命令行工具允许管理员通过命令行输入特定的指令来收集有关存储系统的信息。
这对于需要深入了解系统状态的情况非常有用。
####四、HP支持服务模式**1.主动式响应--SPCall-Home**-SPCall-Home是一种主动式支持服务,当存储系统检测到潜在问题时会自动通知HP支持中心。
这种方式有助于及时发现并解决问题,减少停机时间。
**2.被动式响应—HP服务热线**-当用户遇到问题时,可以通过HP服务热线寻求帮助。
这是一种被动式的响应方式,依赖于用户的主动联系。
**3.被动式响应—邮寄存储日志**-如果无法通过远程方式解决某些问题,用户可能需要将存储日志发送给HP支持团队进行进一步分析。
这种方式适用于那些需要深入诊断的情况。
以上内容详细阐述了HP3PAR存储系统的几个关键方面,包括其架构特点、日常配置和维护的操作流程,以及HP提供的支持服务模式。
通过对这些知识点的理解,可以帮助IT专业人员更好地管理和利用3PAR存储系统,确保其高效稳定地运行。
2024/12/29 5:38:03 2.19MB 3PAR存储
1
DM9051是基于SPI接口的以太网MAC+PHY集成IC,本文档包括驱动源码及其源码解读,包括寄存器初始化,接口函数封装
2024/12/27 18:54:52 116KB DM9051 以太网 PHY MAC
1
这是opencvsvm图像分类的整个工程代码,在VS2010下打开即可。
整个工程文件以及我的所有训练的图片存放在这里,需要的可以下载,自己在找训练图片写代码花了很多时间,下载完后自行解压,训练图片和测试图片可以从这免费下载http://download.csdn.net/detail/always2015/8944959,projectdata文件夹直接放在D盘就行,里面存放训练的图片和待测试图片,以及训练过程中生成的中间文件,现在这个下载object_classfication_end则是工程文件,我用的是vs2010打开即可,下面工程里有几个要注意的地方:1、在这个模块中使用到了c++的boost库,但是在这里有一个版本的限制。
这个模块的代码只能在boost版本1.46以上使用,这个版本以下的就不能用了,直接运行就会出错,这是最需要注意的。
因为在1.46版本以上中对比CsSVM这个类一些成员函数做了一些私有化的修改,所以在使用该类初始化对象时候需要注意。
2、我的模块所使用到的函数和产生的中间结果都是在一个categorizer类中声明的,由于不同的执行阶段中间结果有很多个,例如:训练图片聚类后所得到单词表矩阵,svm分类器的训练的结果等,中间结果的产生是相当耗时的,所以在刚开始就考虑到第一次运行时候把他以文件XML的格式保存下来,下次使用到的时候在读取。
将一个矩阵存入文本的时候可以直接用输出流的方式将一个矩阵存入,但是读取时候如果用输入流直接一个矩阵变量的形式读取,那就肯定报错,因为输入流不支持直接对矩阵的操作,所以这时候只能对矩阵的元素一个一个进行读取了。
3、在测试的时候,如果输入的图片太小,或者全为黑色,当经过特征提取和单词构造完成使用svm进行分类时候会出现错误。
经过调试代码,发现上述图片在生成该图片的单词的时候所得到的单词矩阵会是一个空矩阵,即该矩阵的行列数都为0,所以在使用svm分类器时候就出错。
所以在使用每个输入图片的单词矩阵的时候先做一个判断,如果该矩阵行列数都为0,那么该图片直接跳过。
2024/12/26 7:01:54 37.36MB SVM图像分类
1
增值税开票模拟系统(5.02版本)1、由于增值税防伪税控系统从6.0版本开始不再提供模拟开票功能,所以想学习开票操作的朋友,只能使用此版本的软件来做基本的模拟练习操作,虽然版本不同,不过基本的主要操作没有太大变化;
2、本处提供的开票软件,不是所谓的破解版或试用版,航天税控开票系统在此版本的软件设计就已为方便大家学习有专设此模拟开票功能,只是不知为何以后的版本不再提供这类的功能了;
安装操作简单介绍如下:第一步:首先运行本软件内的setup.exe程序,安装时提示,"是否要重启",点击"不需要重启",完成,再次运行安装程序。
接下来的就是下一步,下一步的了。
最后安装完了,提示是否要重启,还是不需要重启的。
第二步:在本软件内有一个目录“相关文档”.将这个目录的所有文件拷贝到"C:\ProgramFiles\航天信息\防伪开票\DATABASE\SYSTEM\SUIT"这个目录下(假设你安装时是安装在默认的C盘),用覆盖的形式,注意拷贝完后,如果发现这三个文件的文件属性为“只读”,则请修改清除其只读属性,否则后面进入软件操作时会出现英文提示,只读文件不可操作的内容。
到止软件模拟安装算是完成了。
第三步:运行“C:\ProgramFiles\航天信息\防伪开票\Bin\SimuTax.exe”这个文件。
选择菜单“发行系统”=>“发行金税卡”,弹出窗口,你就在“企业名称”栏中随便填点吧。
然后点击“发行”=》“退出”第四步:还是选择菜单“发售系统”=>“发票发售”,在弹出的窗口中将“发票起始号”填满,随你填啦(要求是数字),然后点击“发售”,成功了就可以退出这个软件了。
第五步:还是回到桌面的“防伪开票”,双击进去。
弹出的窗口上选择“进入系统”,这时出现操作员登陆窗口,在操作员列表上选择“管理员”,没有口今,就直接点击“确定”,这时系统提示“相差一个月”什么的,不要去管它,”确定“就是了。
第六步:到了此时,你已经进入了航天的开票系统中了,但是还有东西要做的,请耐心点吧。
这个时候看见了“初始化起”没有(如果没有看见的话,可以点击一下工具条上的“系统设置”),这时的初始化起是有颜色的,如果没有颜色的话,你登陆的时候操作员就选错了,不是选择的是管理员,请重新登陆吧,如果是这样的话,就请自己研究吧,谁叫你不跟着我操作。
有颜色的话,就点击一下“初始化起”吧,在弹出的窗口上单击一下“确认”,系统重建完表后,就会提示初始化成功的了,初台化成功后,再点一下工具条上的“系统设置”(这个按钮在菜单下一点点,如果你都看不见的话,我建议你不要玩这个了),然后在弹出的对话框中,选择一下“初始化终”,点击一下“确认”,到了这一步,所有的初始化完成了,第七步:点一下工具条上的“发票管理“=》"发票读入"=》“确认”。
最后提示成功读入。
第八步:你的所有工作已经完成了,这一下,你可以测试自己开票了。
点一下“发票填开”,下面的开票操作我就不教了,所以不是模拟设置的内容了,自己发挥吧。
2024/12/20 17:18:29 21.41MB 增值税开票模拟
1
【联想G470BIOS】是针对联想G470系列笔记本电脑的固件更新程序,主要负责管理计算机的基本输入输出系统(BIOS)。
BIOS是计算机硬件和操作系统之间的一个关键接口,它控制着系统启动流程、硬件设备驱动以及系统的一些基本功能。
在联想G470上,BIOS的更新对于优化系统性能、增强硬件兼容性、修复已知问题以及提升安全性至关重要。
BIOS的主要功能包括:1.自检与初始化:在计算机开机时执行POST(Power-OnSelfTest)以检查硬件是否正常。
2.引导加载:负责从硬盘、光驱、USB设备等启动媒介加载操作系统。
3.设备驱动:为系统提供基本的硬件控制,如键盘、鼠标、显示器等。
4.系统设置:通过BIOS设置程序允许用户更改硬件配置,如内存频率、硬盘模式、启动顺序等。
5.安全功能:包括密码保护、BIOS锁定等,防止非法访问和修改。
【la-6751pg470南桥.bin】这个文件名中,“la-6751p”可能是指联想G470所使用的南桥芯片型号,南桥芯片是主板上的一个重要组成部分,它管理着I/O(输入/输出)接口,如USB、SATA、PCI-E、网络等。
"g470"再次强调了这是针对联想G470系列的设备,而".bin"是二进制文件的通用扩展名,通常用于表示BIOS或固件更新文件。
南桥芯片的更新可能涉及到以下方面:1.性能提升:新版本的南桥可能会优化I/O通道,提高数据传输速度。
2.兼容性增强:解决与新设备的连接问题,比如新的USB标准或SATA接口。
3.稳定性改进:修复可能导致系统崩溃或蓝屏的bug。
4.新功能添加:例如支持新的硬件标准,如Wi-Fi或蓝牙模块。
5.安全性更新:修补可能存在的安全漏洞,防止恶意攻击。
更新BIOS或南桥固件需谨慎操作,因为错误的过程可能导致系统无法启动。
一般来说,这需要一个可引导的介质(如USB或光盘)和遵循制造商提供的详细步骤。
同时,确保在更新前备份重要数据,因为固件更新过程中断可能会导致数据丢失。
总结来说,联想G470BIOS的更新对于保持电脑的稳定性和安全性至关重要。
南桥固件更新则侧重于改善硬件兼容性、性能和安全性,确保电脑能更好地适应不断变化的外部设备和技术环境。
正确地进行这些更新,可以显著提升用户使用体验。
2024/12/14 12:30:30 1.66MB 联想G470 BIOS
1
霍夫曼霍夫曼树的生成,编码,解码(C++)voidinit_link(Link*head);//初始化链表voidinsert_link(Linkhead,HFMTreehfm);//向链表中插入一个元素,并按照权重排序intdelete_link(Linkhead,HFMTree*hfm);//依次删除链表中的数据,成功返回1,失败返回0/*创建赫夫曼树,str为关键字,w为对应的权重*/intcreat_hfmTree(HFMTree*root,charstr[],intw[]);/*获取赫夫曼编码表,存储在数组code中*/voidhfmTree_code(HFMTreehead,inta,charcode[]);/*译码,译码结果存储在decode数组中,code输入的报文*/
2024/12/13 21:45:46 4KB huffman
1
IAR工程例子,STM8L单片机,包含LORA初始化,CAD发送,随机延时切实可行的例程,根据扩频因子(主要是空中传输时间)来调整随机延时的基础时间。
2024/12/8 14:03:24 2.7MB LORA CAD
1
解压,将/bin/glew32.dll拷贝到c:/windows/system32下面,将/lib/glew32.lib拷贝到VC安装目录下的lib目录下(如:/MicrosoftVisualStudio9.0/VC/lib/下),将/include/glew.h和/include/wglew.h拷贝到VC安装目录下的/include/gl/目录下(如:/MicrosoftVisualStudio9.0/VC/include/gl/下)。
在程序中我们只需要在包含gl,glu或glut.h之前包含glew.h就可以了(注意:一定要先包含glew.h),在在代码中加上这么一句:#pragmacomment(lib,"glew32.lib")示例:#include#include#progrmacomment(lib,"glew32.lib")在创建OpenGL渲染context之后,调用glewInit();初始化glew就可以了。
2024/12/7 12:17:40 2.97MB glew GL/glew.h
1
共 647 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡