用分子束外延(MBE)技术,在GaAa(100)衬底上生长了厚度从0.045μm到1.4μm的ZnSe薄膜。
通过室温拉曼光谱的测量对ZnSe薄膜纵光学声子(Longitudinal-opticalphonon)的谱形进行了分析。
用拉曼散射的空间相关模型定量分析了一级拉曼散射的空间相关长度与晶体质量之间的关系,结果表明ZnSe外延层的晶体质量随着外延层厚度的减薄是渐渐退化的,这是由于界面失配位错引入外延层所致,理论分析与实验结果相吻合。
2023/8/21 4:12:03 298KB 光学材料 ZnSe 拉曼光谱
1
本文报道用0.53μm波长超短脉冲序列泵浦角度调谐的LiNbO_3参量晶体,获得1%单程参量放大能量转换效率,并在0.8~1.6μm范围测得参量信号光和空载光波长调谐曲线.
2023/8/16 19:51:33 2.98MB 超短脉冲 参量放大 LiNbO_3参 ultra
1
激光喷丸强化技术是一种新型的材料表面改性技术相比于传统喷丸强化技术,具有明显的优势。
采用试验与有限元分析相结合的方法,探讨了在一定冲击顺序下,多点激光喷丸强化处理后紧固孔周围残余应力的分布情况。
结果表明,通过多个直径为2.6mm光斑的组合能形成一个直径近似为6mm的较大圆形冲击区域,可用来替代大直径光斑进行冲击强化。
在多点激光喷丸强化过程中,由于多个光斑叠加,导致冲击区域的表面残余压应力幅值由第一点冲击后的134MPa增加到冲击结束后的254MPa,冲击区域变形深度也逐渐增大到26.6μm。
在冲击区域钻孔后,紧固孔孔口边缘处的最大残余压应力值明显减小。
模拟值与实验值吻合较好。
2023/8/7 17:21:38 10.56MB 激光光学 紧固孔 多点激光 残余应力
1
矿用锚护钻机是现代化矿井巷道支护过程中高效、安全的自动化设备,极大地缓解了掘锚失调的问题。
其中锚护机械臂是完成支护作业的关键部件,其工作性能直接影响着设备对巷道顶板、侧壁的支护效果。
本文介绍了矿用锚杆钻机机械臂的结构设计及工作原理,利用旋量理论推导出了机械臂的正运动学数学模型,明确给出了机械臂末端的理论位置,为控制系统方案的设计提供理论指导。
根据机械臂的实际工作要求制定了机械臂的运动控制系统方案及软硬件,包括机械臂在井下对巷道顶板和侧壁支护的工作方案进行了路径规划,本文给出了机械臂侧壁支护的作业路径图和作业图,为后续试验奠定基础。
在明确了锚护机械臂的轨迹控制原理的基础上制定了复合控制算法,即输入成型技术结合分数阶PDμ控制技术。
最后在车间实现对机械臂控制性能的测试,主要包括机械臂重复定位精度的测量、机械臂绝对定位精度的测量及机械臂系统的锚护实验。
通过对试验数据的对比和分析可知测试结果均满足设计要求,验证了运动控制系统的有效性。
对矿用锚杆钻机机器臂复合控制算法的研究,成为了预测机械臂空间轨迹跟踪和定位的新方法,确保机械臂的工作性能更好。
同时也为实现机械臂的最优结构的设计和高速、高精度的
1
低发射率光子晶体(PC)具有高反射特性,在高温环境的强烈照射下,高反射光子晶体会成为亮目标。
为了使光子晶体具有环境适应性,使之在相当宽的照度范围内都能与背景融合,对光子晶体的特性进行了深入研究。
采用改变光子晶体周期数的方法,设计并制作了发射率分别为0.116、0.212、0.307、0.519、0.606、0.718的6种光子晶体,拼接成4块光子晶体迷彩(PCpp),并将其覆盖在仿真目标上。
用8~14μm热像仪观察目标和背景,并记录各个时间点的平均辐射温度数据,利用辐射温度来计算目标和背景之间的欧式距离和目标在此背景下的伪装效率。
对比结果发现,发射率为0.212、0.30
2023/7/17 7:42:07 2.52MB
1
采用熔盐法分别采用KCl,K2SO4,K2CO3或KNO3为熔融盐和Nb2O5反应,900℃下反应2h合成了铌酸钾晶体。
研究了熔融盐的种类对产物组成、形貌和光学性能的影响。
X射线衍射检测结果表明分别采用KCl和K2SO4为熔融盐时的产物为KNb3O8,而采用K2CO3和KNO3为熔融盐时得到的产物为K3NbO4。
电子扫描显微镜检测结果表明采用KCl为熔融盐时产物为0.2~0.5μm宽,1~10μm长的棒状结构,采用K2SO4为熔融盐时,产物为0.2~1μm宽,1~25μm长的棒状结构。
采用K2CO3为熔融盐时,产物不是棒状结构,而是不规则颗粒状结构。
采用KNO3为熔融盐时,产物为0.2~1μm宽的棒状结构,长度为0.5~4μm,部分棒连接在一起。
荧光光谱研究表明,以K2SO4,K2CO3和KNO3为熔融盐制备的样品具有非常相似的荧光光谱,以KCl,K2SO4和K2CO3为熔融盐制备的样品具有较好的荧光性。
2023/7/15 20:22:24 1.6MB 光学材料 铌酸钾 熔盐法 optical
1
本教程设计了A型线圈电感,并利用该电路对厚度为2ụm、金属宽度为4μm的环形电感进行了仿真。
电感位于厚度为8um的氧化层上,在厚度为200ụm的10-Q-cm硅片上。
金属的电导率为5.8×107Siemens/m。
2023/6/8 23:24:25 1.32MB 射频/微波
1
嵌入式实时操作系统μCOS-Ⅱ经典实例——基于STM32处理包括例程源码,十分清晰的扫描,不错的一本书
2023/6/7 21:55:01 47.21MB ucos 基于 stm32 经典案例
1
自己编写的VB程序,请大家多指教!(赚一点积分嘿嘿……)部分代码如下:PrivateSubCommand1_Click()k=1.4D=Val(Text1.Text)S=Val(Text2.Text)Ne=Val(Text3.Text)nh=Val(Text4.Text)ε=Val(Text5.Text)L=Val(Text6.Text)R=Val(Text7.Text)ge=Val(Text8.Text)P0=Val(Text13.Text)T0=Val(Text12.Text)gc=Val(Text9.Text)gh=Val(Text10.Text)go=Val(Text11.Text)mt=Val(Text14.Text)i=Val(Text15.Text)ι=Val(Text16.Text)α=Val(Text38.Text)ξz=Val(Text40.Text)φi=Val(Text41.Text)ηm=Val(Text42.Text)n=Val(Text45.Text)Vh=(S*0.01)*3.14*(D*0.01)^2/4'排气过程Pr=1+0.3*n/nhTr=850+350*n/nhText17.Text=Val(Pr)Text18.Text=Val(Tr)'进气过程δ=0.5ΔT=ΔTh*(110-0.0125*n)/(110-0.0125*nh)Pa=Int(10^3*(P0*(1-((10*n^2/520/10^6)/10.6^2/0.75^2)*(ε-δ)^2/(ε-1)^2)^(k/(k-1))))/10^3γ=Int(10^3*(T0+ΔT)*Pr/Tr/(ε*Pa-Pr))/10^3Text44.Text=γText19.Text=PaTa=(T0+ΔT+γ*Tr)/(1+γ)ηv=ε*Pa*T0/(ε-1)/P0/Ta/(1+γ)Text20.Text=Val(Int(1000*Ta)/1000)Text21.Text=Val(Int(1000*ηv)/1000)'压缩过程n1=1.46-0.05*Nn/nPc=Pa*ε^n1Tc=Ta*ε^(n1-1)Text22.Text=Val(Int(1000*Pc)/1000)Text23.Text=Val(Int(1000*Tc)/1000)'燃烧过程L0=(gc/12+gh/4-go/32)/0.21M1=α*L0+1/mtCv1=(4.815+0.415*10^(-3)*Tc)*4.1868M2=0.79*α*L0+gh/2+gc/12A=(3.7+3.3*α)*10^(-4)*4.1868B=(4.4+0.62*α)*4.1868μ0=M2/M1μ=(μ0+γ)
2023/6/2 14:40:23 9KB VB 发动机 汽油机 柴油机
1
嵌入式实时操作系统μC/OS-III是学习嵌入式操作系统的经典资料。
2023/5/29 2:26:16 95.28MB 嵌入式 操作系统 μC/OS-
1
共 112 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡