运用杂化密度泛函方法(DFT)B3LYP,在LANL2DZ赝势基组水平上对Yn(n=2~10)团簇的多种可能初始构型进行了结构优化和频率及光谱分析,根据能量最低原则确认了Yn(n=2~10)团簇没有虚频的基态结构,且计算得到的结构比以往理论计算得到的结构能量更低,Y2振动频率ωe=188.9cm-1比以往计算值更接近实验值184.4cm-1,在此基础上研究了团簇的稳定性和极化率,并分析了Yn(n=2~10)团簇的光谱性能。
结果表明,Y7为所研究团簇结构转折点,团簇的电子稳定性随着原子数增加而逐渐减弱。
振动光谱分析表明,Yn(n=2~10)团簇中具有较高对称性的C2v和Cs点群具有更多的振动模式,而稳定性较强的Y7和Y9在所研究频段内分别有较好的红外和拉曼活性,有明显的共振现象。
2025/2/20 6:43:34 1.14MB 材料 光谱学 Yn(n=2~10 密度泛函
1
本人编写奇异值差分谱程序,经本人测试可用!
2025/2/19 19:37:40 578B 奇异值差分谱
1
1-ENVI基础知识2-影像预处理基础3-自定义坐标系4-MODIS几何校正5-地形图的几何校正6-几何校正(RapidEye几何校正)7-TM图像与SPOT图像配准8-TM图像校正(矢量上选点)9-图像融合10-图像镶嵌11-图像裁剪12-图像增强13-监督分类(样本选择)14-监督分类(分类)15-监督分类(分类后处理)16-监督分类(精度验证)17-非监督分类18-快速制图19-三维可视20-基于GLT的几何校正(风云三号气象卫星为例)21-正射校正22-正射校正(选择控制点QB校正)23-RapidEye正射校正24-构建RPC正射校正(BuildRPC)25-图像自动配准26-基于专家知识决策树分类27-决策树自动阈值分类28-面向对象图像分类(城市信息提取)29-面向对象耕地信息提取30-基于立体像对的DEM提取31-DEM分析与应用32-遥感动态监测33-林冠状态遥感变化监测34-森林砍伐监测35-耕地信息变化监测36-雷达图像基本处理37-高光谱基础38-传感器定标和大气校正39-快速大气校正40-波谱库浏览与建立41-植被识别42-矿物识别43-基于波谱沙漏工具的矿物识别44-植被指数计算和分析45-波段运算(bandmath)46-ENVI的二次开发47-IDL简介48-遥感与GIS一体化
2025/2/19 18:06:16 251KB ENVI IDL 视频 培训
1
1.两个串相等的充要条件是()。
A.串长度相等B.串长度任意C.串中各位置字符任意D.串中各位置字符均对应相等2.对称矩阵的压缩存储:以行序为主序存储下三角中的元素,包括对角线上的元素。
二维下标为(i,j),存储空间的一维下标为k,给出k与i,j(i<j)的关系k=()(1<=i,j<=n,0<=k<n*(n+1)/2)。
A.i*(i-1)/2+j-1B.i*(i+1)/2+jC.j*(j-1)/2+i-1D.j*(j+1)/2+i3.二维数组A[7][8]以列序为主序的存储,计算数组元素A[5][3]的一维存储空间下标k=()。
A.38B.43C.26D.294.已知一维数组A采用顺序存储结构,每个元素占用4个存储单元,第9个元素的地址为144,则第一个元素的地址是()。
A.108B.180C.176D.1125.下面()不属于特殊矩阵。
A.对角矩阵B.三角矩阵C.稀疏矩阵D.对称矩阵6.假设二维数组M[1..3,1..3]无论采用行优先还是列优先存储,其基地址相同,那么在两种存储方式下有相同地址的元素有()个。
A.3B.2C.1D.07.若Tail(L)非空,Tail(Tail(L))为空,则非空广义表L的长度是()。
(其中Tail表示取非空广义表的表尾)A.3B.2C.1D.08.串的长度是()。
A.串中不同字母的个数B.串中不同字符的个数C.串中所含字符的个数,且大于0D.串中所含字符的个数9.已知广义表((),(a),(b,c,(d),((d,f)))),则以下说法正确的是()。
A.表长为3,表头为空表,表尾为((a),(b,c,(d),((d,f))))B.表长为3,表头为空表,表尾为(b,c,(d),((d,f)))C.表长为4,表头为空表,表尾为((d,f))D.表长为3,表头为(()),表尾为((a),(b,c,(d),((d,f))))10.广义表A=(a,b,c,(d,(e,f))),则Head(Tail(Tail(Tail(A))))的值为()。
(Head与Tail分别是取表头和表尾的函数)A.(d,(e,f))B.dC.fD.(e,f)二、填空题(每空2分,共8分)。
1.一个广义表为F=(a,(a,b),d,e,(i,j),k),则该广义表的长度为________________。
GetHead(GetTail(F))=_______________。
2.一个n*n的对称矩阵,如果以行或列为主序压缩存放入内存,则需要个存储单元。
3.有稀疏矩阵如下:005700-300040020它的三元组存储形式为:。
三、综合题(共22分)。
1.(共8分)稀疏矩阵如下图所示,描述其三元组的存储表示,以及转置后的三元组表示。
0-30004060000007015080转置前(4分):转置后(4分):2.(共14分)稀疏矩阵M的三元组表如下,请填写M的转置矩阵T的三元组表,并按要求完成算法。
(1)写出M矩阵转置后的三元组存储(6分):M的三元组表:T的三元组表:ije2133244254
1
用户管理系统。
语言JAVA publicvoiddoPost(HttpServletRequestrequest,HttpServletResponseresponse) throwsServletException,IOException{// 设置编码格式 response.setContentType("text/html;charset=GB18030"); response.setCharacterEncoding("GB18030"); request.setCharacterEncoding("GB18030"); //调用业务逻辑 UserDAOuserDAO=newUserDAO();// 返回的list值 ArrayListlist=userDAO.queryAll(); //重点。


HttpSession的用处??? HttpSessionsession=request.getSession();// 设置session的值 session.setAttribute("userList",list); //跳转到显示的页面,格式(得到当前页面的+要跳转的页面) response.sendRedirect(request.getContextPath()+"/manager.jsp"); }
2025/2/19 5:36:56 2.99MB UMS JAVA
1
DEA模型。
X为投入量,输入格式:第一列为第一个公司的投入量,第二列为第二个公司的投入量,以此类推;
Y为产出量,输入格式:第一列为第一个公司的投入量,第二列为第二个公司的投入量,以此类推。
输出结果:最后一行为效率值,前面的为模型系数
2025/2/19 3:31:25 576B matlab DEA BCC
1
摘要:遗传算法(GA)和人工神经网络(ANN)的相互结合有辅助式和合作式两种方式.本文在此基础上提出了融合、BP_GA和GA_BP三种算法,并采用GA_BP算法同时优化BP神经网络的结构、权值和阈值,研究和实现了一套先进的编码技术和进化策略,克服了传统BP神经网络经验尝试方法的盲目性.实例优化与检验结果表明:遗传算法优化获得的神经网络比由经验尝试法得到的BP网络性能更优异,方法更合理.关键词:遗传算法:神经网络;拓扑结构;权值
2025/2/18 10:16:08 484KB 遗传算法 神经网络 拓扑结构
1
基于拉格朗日插值法,仿真插值点从10增加到70的过程中(插值点数可自己修改)插值函数的变化情况,并保存为gif动图。
1
基于JAVA的网上书店开题报告主要研究内容:网上书店系统主要只要分为用户模块和管理员模块。
用户模块:1)注册:新用户填写表单,包括用户名、联系方式、邮箱等信息。
如果输入的用户名已经被其他用户注册使用,系统提示用户,建议其更改自己的用户名。
2)登入:输入用户名、密码。
如果用户输入的用户名或密码错误,系统将显示错误信息;
如果登入成功,就将一个成功登入的信息赋值给用户,同事用户操作的页面将被链接到“主页”页面3)图书浏览与查询:用户可以在本页面浏览图书书目,同时,将想要的图书进行收藏、加入购物车或订购图书。
4)图书收藏:登入后的用户可以对图书进行收藏,方便下次购买。
5)购买图书:登入后的用户,可以直接购买图书转到提交订单的页面。
6)购物车:登入后的用户可以先图书加入购物车,在购物车中可以查看已加入的图书数量信息等,可以删除购物车中的图书,决定购买时,可提交订单。
7)付款:提交订单后跳转到付款页面,用户进行付款。
管理员模块:1)用户管理:登入管理员账号后,可以对普通用户进行管理,可查看用户信息,可删除用户账号。
2)图书管理:查询图书的信息,如库存量,作者,出版社等。
可以添加新的图书。
可以修改已有的图书信息。
可以删除已有的图书信息。
3)订单管理:查看已经生成的订单。
可以对根据用户购买后的备注要求修改已生成的订单。
可以删除过期的订单。
2025/2/14 16:47:22 85KB JSP网上书店
1
CreateReactApp入门该项目是通过引导的。
可用脚本在项目目录中,可以运行:yarnstart在开发模式下运行该应用程序。
打开在浏览器中查看它。
如果您进行编辑,则页面将重新加载。
您还将在控制台中看到任何棉绒错误。
yarntest在交互式监视模式下启动测试运行器。
有关更多信息,请参见关于的部分。
yarnbuild构建生产到应用程序build文件夹。
它在生产模式下正确捆绑了React,并优化了构建以获得最佳性能。
生成被最小化,并且文件名包括哈希值。
您的应用已准备好进行部署!有关更多信息,请参见关于的部分。
yarneject注意:这是单向操作。
eject,您将无法返回!如果您对构建工具和配置选择不满意,则可以随时eject。
此命令将从您的项目中删除单个生成依赖项。
而是将所有配置文件和传递依赖项(webpack
2025/2/14 10:15:07 5.5MB JavaScript
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡