pytorch的安装文件,来源于官网,适合版本是python3.7windows平台
2023/9/14 14:27:38 85.28MB pytorch
1
实施与ImageNet-预训练ResNet50图像编码器和FC/FC-UpConv解码器变化:支持以视图为中心和以形状为中心的训练(以形状为中心的效果更好)同时支持倒角距离和土方距离,因为损耗(EMD速度较慢,但​​性能要好一些)训练10,000个地面真点可提高1K/2K训练的性能(这类似于最近基于SDF的方法,其中通常会采样>10,000个查询点)要使用,请先编译cd和emd(请参阅自述文件),然后运行bashtrain.sh要下载数据,请单击下载Chair数据(10K采样点云+24个随机视角的渲染图像)。
请注意,这是在PartNet数据拆分之后进行的。
您需要切换到其他论文中使用的那些。
在Ubuntu16.04,Cuda9.0,Python3.6.5,PyTorch1.1.0上测试了代码。
此代码使用Blenderv2.79渲
2023/9/13 16:11:43 290KB Python
1
pytroch官网提供的预训练模型:resnet18:resnet18-5c106cde.pth和resnet50:resnet50-19c8e357.pth(两个文件打包在一起)
2023/9/10 7:05:27 132.2MB pytorch resnet
1
该项目包括用于单个代理和多代理的各种DeepReinforcementLearning算法的PyTorch实现。
2023/9/6 21:56:44 172KB Python开发-机器学习
1
基于庞加莱嵌入式层次学习表示法的论文源码,基于pytorch实现的,原作者代码
2023/8/23 9:06:43 346KB 庞加莱 层次学习
1
代码是利用pytorch框架实现的,识别过程是利用循环神经网络RNN进行训练。
2023/8/16 15:11:46 3KB pytorc MNIST RNN
1
pytorch中的基础预训练模型和数据集(MNIST,SVHN,CIFAR10,CIFAR100,STL10,AlexNet,VGG16,VGG19,ResNet,Inception,SqueezeNet)
2023/8/13 20:09:31 38KB Python开发-机器学习
1
今天小编就为大家分享一篇pytorch下使用LSTM神经网络写诗实例,具有很好的参考价值,希望对大家有所帮助。
一起跟随小编过来看看吧
2023/8/4 15:22:55 77KB pytorch LSTM 神经网络 写诗
1
PBAN-PyTorch工作的实施。
要求PyTorch>=0.4.0NumPy>=1.13.3Python3.6GloVe预先训练的单词向量:下载预训练的单词向量。
将和到\glove\文件夹中。
数据集基于的餐厅和笔记本电脑数据集。
餐厅数据集极性#积极的#消极的#中性的火车2164807637测试728196196笔记本电脑数据集极性#积极的#消极的#中性的火车994870464测试341128169用法训练模型:pythontrain.py--model_namepban--datasetrestaurant显示帮助消息并退出:pythontrain.py-h实施模型LSTM唐杜玉等。
“有效的LSTM,用于目标依赖的情感分类。
”2016
2023/7/31 6:43:46 764.1MB Python
1
图片:framed_picture:分类App样板您是否对Internet上的大量视频,博客和其他资源感到困惑,不知道在哪里以及如何部署AI模型?如果您有一个模板,可以在其中插入经过训练的模型文件,编辑一些促销文字,然后瞧瞧,那就好了,那就完成了。
好吧,别无所求,因为此存储库使您听起来像它一样容易!如何使用这个项目?:thinking_face::thinking_face::注意:目前,我们仅专注于使用tensorflow/pytorch构建的图像分类模型。
稍后,我们将扩展到处理文本和语音数据以及使用MXNet或julia环境进行训练的模型我假设您在操作系统中安装了Python(带有Anaconda)并设置为path。
如果没有,请访问。
强烈建议将GIT与Python结合使用以进行版本控制和部署A.获取我们的模板并进行设置:打开GitHub使用您的凭据登录。
[如果尚未创建帐户,请创建]打开系统上的终端/命令提示符移至要在本地保存项目文件的合适位置示例:cdDesktop/projects克隆存储库。
gitclo
2023/7/30 11:46:45 1.19MB python heroku aws digitalocean
1
共 123 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡