采用32引脚HTSSOP封装,宽电压范围:4.5V-26V,高达1.2MHz开关频率,高效D类操作,大于90%的功率效率与低空闲损失组合在一同大大减少了散热片尺寸,高级调制系统,多重开关频率,AM干扰防止,主器件/从器件同步,带有高电源抑制比(PSRR)的反馈电源级架构减少了对于PSU的需要,可编程功率限制,差分/单端输入,带有单过滤器单声道配置的立体声和单声道模式,单一电源减少了组件数量,集成的自我保护电路包括过压、欠压、过热、DC检测、和带有错误报告的短路保护,21V时,2x50W被驱动进入一个4Ω桥接式(BTL)负载。
2021/11/2 18:37:45 22.06MB TPA3116D2
1
实验一三点式正弦波振荡器(模块1)一、实验目的1.掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
2.通过实验掌握晶体管静态工作点、反馈系数大小对振荡幅度的影响。
图1-1正弦波振荡器(4.5MHz)将开关S3拨上S4拨下,S1、S2全部断开,由晶体管Q3和C13、C20、C10、CCI、L2构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI可用来改变振荡频率。
振荡器的频率约为4.5MHz振荡电路反馈系数:F=振荡器输出通过耦合电容C3(10P)加到由Q2组成的射极跟随器的输入端,因C3容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。
射随器输出信号Q1调谐放大,再经变压器耦合从J1输出。
三、实验步骤1.根据图在实验板上找到振荡器各零件的位置并熟悉各元件的作用。
2.研究振荡器静态工作点对振荡幅度的影响。
3.将开关S3拨上S4拨下,S1、S2全拨下,构成LC振荡器。
4.改变上偏置电位器RA1,记下发射极电流,并用示波器测量对应点的振荡幅度VP-P(峰—峰值)记下对应峰峰值以及停振时的静态工作点电流值。
5.经测量,停振时的静态工作点电流值为2.23mA6.分析输出振荡电压和振荡管静态工作点的关系,按以上调整静态工作点的方法改变Ieq,并测量相应的,且把数据记入下表。
Ieq(mA)1.201.401.591.802.23Up-p(mV)304348384428停振7.晶体振荡器:将开关S4拨上S3拨下,S1、S2全部拨下,由Q3、C13、C20、晶体CRY1与C10构成晶体振荡器(皮尔斯振荡电路),在振荡频率上晶体等效为电感。
8.拍摄晶振正弦波如下:f=4.19MHz四、实验结果分析分析静态工作点、反馈系数F对振荡器起振条件和输出波形振幅的影响,并用所学理论加以分析。
答:晶体管的起振条件是约等于0.6V,使静态工作点处于此电压附近,并加入正反馈。
同时随着静态电流的增大,输出波形的幅度也增大。
增长到一定程度后,由于晶体管的非线性特性和电源电压的限制,输出波形振幅不再增长,振荡建立的过程结束,放大倍数的值下降至稳定。
|AF|=1,输出波形振幅维持在一个确定值,电路构成动态平衡。
五、实验仪器1.高频实验箱1台2.双踪示波器1台3.万用表1块
1
项目名称:简易频率计设计********************************************** 功能描述:1.测量信号的频率(0.1-2MHz)* 2.测量信号周期* 3.刷新时间可调理(1-9S)* 4.显示单位可选择*********************************************** 设计者:************************************************** 日期:2009-4-30************************************************ 备注:2009电子大赛训练项目*
2022/9/5 1:47:49 16KB 数字频率
1
天线电感选择比TVDD发射电流大的标称值,封装选择尽量小,但不能0805小。
如FM17550,天线发射电流在100mA,可以选择MLF2012DR68KT,680nH,±10%,该电感电流达到150mA。
如使用RC663,电感选择需要比250mA标称值大。
天线采用双端驱动,具有更好的驱动能力。
对应天线区域内的元件,选择5%精度以内的,在使用低功耗侦测卡片(LPCD)功能时,天线区域内元件选择2%精度以内的。
精度10%的元件会导致天线谐振频点偏差,如天线谐振电容在200pF,误差在±20pF,会使得谐振频率偏离±0.6MHz,导致读卡功能严重下降。
在使用LPCD功能时,元件误差会导致误触发读卡或者卡片侦测不到,产品一致性难以保证。
2022/9/4 9:02:56 1.58MB RFID FM1755 LPCD
1
使用TI公司的FilterPro+Tina软件仿真模仿带通滤波器中心频率2.5Mhz已经设计好PCB板子为了积分共享参数已经优化放大倍数可以补偿带通滤波器衰减的赋值板子作者已经正常使用
2015/7/17 6:22:43 1.16MB 带通滤波器 实物PCB
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡