上位机通讯采用蓝牙模块无线透传;
超声波测身高;
压力传感器&24位AD转换HX711测体重;
压力流量计&32内核自带12位AD数模转换测肺活量;
LCD触摸屏&flash&sd实现人机交互;
rc522模块读取/修正射频卡信息;
每个部分均有头文件和源文件,存于user文件夹下;
建议以此为参考,逐模块修正调试。
1
c8051f35024位AD转换程序完全调通的很适用
2020/1/22 21:22:52 8KB c8051f350 24位AD转换程序
1
51单片机摇杆用到了ad模块将ps2摇杆的信号通过I2c总线,传给单片机处理动作,
2016/6/14 19:51:54 77KB 51单片机摇杆
1
关于Proteus仿真ADC0809,说明以下几点:1、在Proteus中,ADC0809是不可仿真的。
但可以用ADC0808代替ADC0809进行仿真。
ADC0808与ADC0809有相同的引脚,功能极为相似。
在Proteus中,可以认为:ADC0808就是ADC0809。
2、说明几个关键引脚的输出信号:1)OE数据输出允许信号,高电屏有效(意思就是,当OE接高电屏时才允许将转换后的结果从ADC0808的OUT1~OUT8引脚输出,否则,在内部锁存)。
2)ADC0808的ALE信号(22引脚),以及START信号(6引脚)ALE称为“地址锁存允许信号”,高电屏有效。
就是说:ALE=1时,允许将ADDA~ADDC的地址输入到ADC0808的内部译码器,经过译码后选定外部模拟量的输入通道。
START信号,这是一个必须重点掌握的信号,向START送入一个高脉冲,其上升沿使ADC0808内部的“逐次逼近寄存器SAR”复位,其下降沿可以*启动A/D转换,并同时使EOC引脚为低电平*(两个*之间的内容必须牢记!)。
应注意到:ALE是高电屏有效,而START的有效部分只是上升沿和下降沿,所以在连接电路时可以将ALE信号与START信号连接到一起,使它们在同一个脉冲上各取所需。
3)EOCAD转换结束的标志信号,在AD转换结束时成现高电屏。
不能通过以下方式使EOC恢复低电屏:假设EOC连到P1.0口上,企图通过CLRP1.0使EOC恢复低电屏是不可行的。
在Proteus仿真时,会出现黄色信号,表示短路。
在实际当中,短路是非常可怕的事情。
千万注意:EOC是靠START的下降沿清零的!4)在Proteus中,ADC0808的时钟信号要用DCLOCK产生(应该知道啥是DCLOCK吧?),因为在Proteus仿真中,当不外接扩展ROM时,单片机的ALE信号(注意,不是ADC0808的ALE信号!)在Proteus仿真中不会出现,因此即使外接74LS74作分频也不会得到时钟信号。
发点牢骚:很多高校都以ADC0809作为AD转换的代表芯片来讲解,但却不细说其工作过程和工作原理。
我们杨红梅老师上课这样说的:“当程序执行到MOVX@DPTR,A的时候,会启动AD转换”。
我不理解为什么执行到这里就启动AD转换了,于是说道:“老师,这里我不理解。
”作为一名十分有责任感的副教授,她是这样回答的:“就是执行到这里就启动了,你还想理解到什么程度?”……令我实在无语。
于是我到校图书馆翻阅了一些相关的高校教材,其各书所述大同小异,也没什么收获,现在的高校教材呀!不得不令人怀疑有抄袭之嫌。
后来,在清华大学出版社出版的《单片机原理与应用及C51程序设计》一书中获得了一些启发,又亲身动手做了仿真,才略懂一二。
对于希望学好单片机的同仁,我有一点小常识奉送,就是:务必学会读懂时序图,即使老师上课不讲,自己也要自学,并学会。
我写的这个程序极其短小,重点在于使读者通过仿真控制理解上述关键信号的作用,进而理解ADC0808的工作过程和工作原理。
为了减少赘余,突出重点,并没有用单片机对AD转换后的数字信号行处理,而是通过ADC0808的OUT1~OUT8引脚直接输出。
希望看过此例的同仁能通过此例真正学懂ADC0808(也即是:ADC0809)。
相关的时序图,百度上有丰富的资源,在这里就不赘赠了,请见谅。
2016/5/5 21:26:50 37KB Proteus AD转换 单片机
1
[代码及相关实验]---代码为C语言编写1、CPU看门狗实验2、LED跑马灯实验3、CPUTimer定时器实验4、实时时钟实验5、AD转换实验6、扩展SDRAM读写实验7、扩展FLASH读写实验8、快速傅立叶变换(FFT)实验9、FIR滤波器实验10、IIR滤波器实验11、自顺应滤波器(FIRLMS)实验12、键盘扫描实验13、外部中断输入实验14、AIC23播音实验15、LCD显示实验16、串口通信实验17、USB2.0通信实验18、网络通信实验19、SD卡读写实验20、MMC卡读写实验21、数字图像直方图实验22、数字图像边缘检测实验23、数字图像锐化实验24、数字图像取反实验25、数字图像直方图均衡化增强实验26、Flash上电启动程序固化实验
2015/3/25 21:39:24 11.94MB TMS320 VC5509A 各种代码例程
1
输入正弦信号频率为50hz,测量0~15V输入信号的无效值。
在单片机的控制下,用到TLC549芯片进行AD转换。
2015/11/14 19:09:31 987KB 有效值
1
pcf8591模块的AD转换,这个是针对输入一路模拟电压,iic读对应的8bit数据。
功能已经实现,有兴味的可以看看。
2022/9/8 14:48:38 7KB iic
1
STC12单片机做环境检测零碎。
零碎监测温度(DS18B20),光照强度(AD转换光敏电阻),风速检测,GPS,GSM。
手机短信息控制该模块。
通过短信发送指令,零碎自动回复当前GPS和环境信息
2022/9/4 0:28:02 64KB STC12 单片机 GPS GSM
1
下载验证:用示波器测试PA8,可以测出1Khz的正弦波。
如果不是,修改PWM参数,使其正好为1Khz。
用连接线连接PA8与PA6(AD转换器输入口)。
用示波器测试PA4(DA转换器输出口),可以得到方波滤波后得到的正弦波。
2015/3/5 10:43:01 23.07MB STM32 f407 DSP库应用 FIR滤波器
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡