第五次数据结构实验,霍夫曼编码译码器,很简单的dos见面。
2023/9/25 20:30:34 163KB 数据结构 霍夫曼 编码 译码
1
LDPC码编译码器的matlab实现,包括matlab代码、结果截图、一些LDPC码的参考资料
2023/8/28 9:55:21 5.47MB LDPC MATLAB
1
设计8088最小系统要求:1、用8088CPU,配置8284时钟芯片,提供CLK、READY、RESET信号。
8284芯片及周围器件参数见教材。
2、用3片74LS373做地址总线分离器,分离出20根地址线A0~A193、用1片74LS245做双向数据总线驱动器。
4、配置32KROM(27C256),用作BIOS存储器5、配置2*32KRAM(62256)为系统内存储器 6、配置标准I/O接口,总线包括:D0~D7、A0~A2、WR、RD、CS。
7、注意ALE、DT/R 、DEN控制线的用法8、3片存储器的片选可用3-8译码器的输出Y0、Y1、Y2控制,Y4可接I/O的片选.9、IO/M,WR、RD、可通过逻辑或门得到两组独立的读写线,分别控制内存和I/O的读写操作10、注意MN/MX引脚的处理,CPU其他未用的引脚可以不画11、按工程制图标注电路中各芯片的型号、引脚功能和引脚号,不可用总线或简化画法。
2023/8/10 10:23:27 58KB 微机原理制图
1
在当今信息爆炸时代,如何采用有效的数据压缩技术节省数据文件的存储空间和计算机网络的传送时间已越来越引起人们的重视,哈夫曼正是一种应用广泛且非常有效的数据压缩技术。
哈夫曼编码的应用很广泛,利用哈夫曼树求得用于通信的二进制编码称为哈夫曼编码。
树中从根到每一个叶子都有一条路径,对路径上的各分支约定:指向左子树的分支表示“0”码,指向右子树的分支表示“1”码,取每条路径上的“0”或“1”的序列作为和各叶子对应的字符的编码,这就是哈夫曼编码。
而与之相反的过程就称为译码。
本文主要完成哈夫曼树的建立、哈夫曼编码和译码的功能。
我们主要运用的数据结构是哈夫曼结点结构和编码结构,采用顺序链表形式存储。
整体思路清晰明了,算法通俗易懂,通过调试运行,执行结果真确。
2023/8/4 16:55:47 160KB 哈夫曼;编码;译码;
1
CD45144位锁存器/4-16路译码器
2023/7/27 22:49:12 223KB CD 4514 锁存器 译码器
1
关于Proteus仿真ADC0809,说明以下几点:1、在Proteus中,ADC0809是不可仿真的。
但可以用ADC0808代替ADC0809进行仿真。
ADC0808与ADC0809有相同的引脚,功能极为相似。
在Proteus中,可以认为:ADC0808就是ADC0809。
2、说明几个关键引脚的输出信号:1)OE数据输出允许信号,高电屏有效(意思就是,当OE接高电屏时才允许将转换后的结果从ADC0808的OUT1~OUT8引脚输出,否则,在内部锁存)。
2)ADC0808的ALE信号(22引脚),以及START信号(6引脚)ALE称为“地址锁存允许信号”,高电屏有效。
就是说:ALE=1时,允许将ADDA~ADDC的地址输入到ADC0808的内部译码器,经过译码后选定外部模拟量的输入通道。
START信号,这是一个必须重点掌握的信号,向START送入一个高脉冲,其上升沿使ADC0808内部的“逐次逼近寄存器SAR”复位,其下降沿可以*启动A/D转换,并同时使EOC引脚为低电平*(两个*之间的内容必须牢记!)。
应注意到:ALE是高电屏有效,而START的有效部分只是上升沿和下降沿,所以在连接电路时可以将ALE信号与ST
2023/7/25 16:36:19 36KB Proteus AD转换 单片机
1
原始代码,改动一下引脚就能使用,包括计数器,译码器,扫描,数码管显示,超级详细注解,对FPGA的学习直接指导,例化使用几个器件的连接,欢迎互相学习。
2023/7/11 16:23:46 3.42MB FPGA 计数器 译码器 数码管
1
基本要求1)设计一个有“时”、“分”、“秒”(23h59m59s)十进制显示,“秒”使用发光二极管闪烁显示,同时成为小时与分钟的显示分隔。
2)具有校时电路,对当前时间进行校时。
具有校时、校分、校秒功能。
3)用中小规模集成电路组成电子钟,并在实验箱上进行组装、调试。
4)画出框图和逻辑电路图,写出设计、实验总结报告。
4)选做a)闹钟系统b)整点报时功能。
在59分59秒时输出1000Hz信号,音响持续1秒,在1000Hz音响结束时刻为整点。
5)提示:由石英晶体振荡器、分频器、计数器、译码器、显示器和校时电路组成,石英晶体振荡器产生的信号经过分频器作为秒脉冲,秒脉冲送入计数器计数,计数结果通过“时”、“分”、“秒”译码器显示时间。
2023/7/2 13:32:55 1.01MB 课题:数字钟
1
第1章8051单片机C语言程序设计概述 1.18051单片机引脚 1.2数据与程序内存 1.3特殊功能寄存器 1.4外部中断、定时/计数器及串口应用 1.5有符号与无符号数应用、数位分解、位操作 1.6变量、存储类型与存储模式 1.7数组、字符串与指针 1.8流程控制 1.9可重入函数和中断函数 1.10C语言在单片机系统开发中的优势第2章Proteus操作基础 2.1Proteus操作界面简介 2.2仿真电路原理图设计 2.3元件选择 2.4调试仿真 2.5Proteus与?V3的联合调试第3章基础程序设计 3.1闪烁的LED 3.2从左到右的流水灯 3.3左右来回循环的流水灯 3.4花样流水灯 3.5LED模拟交通灯 3.6单只数码管循环显示0~9 3.78只数码管滚动显示单个数字 3.88只数码管显示多个不同字符 3.9数码管闪烁显示 3.108只数码管滚动显示数字串 3.11K1~K4控制LED移位 3.12K1~K4按键状态显示 3.13K1~K4分组控制LED 3.14K1~K4控制数码管移位显示 3.15K1~K4控制数码管加减演示 3.164×4键盘矩阵控制条形LED显示 3.17数码管显示4×4键盘矩阵按键 3.18开关控制LED 3.19继电器控制照明设备 3.20数码管显示拨码开关编码 3.21开关控制报警器 3.22按键发音 3.23播放音乐 3.24INT0中断计数 3.25INT0中断控制LED 3.26INT0及INT1中断计数 3.27TIMER0控制单只LED闪烁 3.28TIMER0控制流水灯 3.29TIMER0控制4只LED滚动闪烁 3.30T0控制LED实现二进制计数 3.31TIMER0与TIMER1控制条形LED 3.3210s的秒表 3.33用计数器中断实现100以内的按键计数 3.3410000s以内的计时程序 3.35定时器控制数码管动态显示 3.368×8LED点阵屏显示数字 3.37按键控制8×8LED点阵屏显示图形 3.38用定时器设计的门铃 3.39演奏音阶 3.40按键控制定时器选播多段音乐 3.41定时器控制交通指示灯 3.42报警器与旋转灯 3.43串行数据转换为并行数据 3.44并行数据转换为串行数据 3.45甲机通过串口控制乙机LED闪烁 3.46单片机之间双向通信 3.47单片机向主机发送字符串 3.48单片机与PC串口通信仿真第4章硬件应用 4.174LS138译码器应用 4.274HC154译码器应用 4.374HC595串入并出芯片应用 4.4用74LS148扩展中断 4.5I2C-24C04与蜂鸣器 4.6I2C-24C04与数码管 4.7用6264扩展内存 4.8用8255实现接口扩展 ……第5章综合设计
1
用C++实现的哈夫曼编译码器,可以实现创建哈夫曼树、对txt文件进行编码、译码,也可以查看生成的哈夫曼树。
数据结构作业参考之必备品。
1
共 98 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡