实验一、电路模拟基础;实验二系统模拟基础;实验三、直流仿真和建立电路模型;实验四、交流(AC)仿真;
实验五、S参数仿真与优化;
实验六、滤波器:设计指导、瞬态和矩量法仿真;
实验七、谐波平衡法仿真;
实验八、电路包络仿真;
实验九、最终系统和电路仿真;
射频瞬态仿真器;
谐波平衡仿真器;
电路包络仿真器
2024/1/11 23:53:47 12.42MB S参数,滤波器,AC DC
1
机械手是一种典型的机电一体化产品,工业机器人手臂是机械手研究领域的热点。
研究工业机器人手臂需要结合机械、电子、信息论、人工智能、生物学以及计算机等诸多学科知识,同时其自身的发展也促进了这些学科的发展。
本文对一种使用在工业机器人手臂的结构进行设计,并完成总装配图和零件图的绘制。
要求对机械手模型进行力学分析,估算各关节所需转矩和功率,完成电机和减速器的选型。
其次从电机和减速器的连接和固定出发,设计关节结构,并对机构中的重要连接件进行强度校核。
2023/12/26 3:28:29 12.78MB 机械手臂
1
VCU整套开发源码+PCB原理图+详细资料开发流程说明书,从底层程序到上层界面,以及故障诊断等,全部包含在内,十分丰富的资源。
电动汽车整车控制器(VCU)是电动汽车整车控制系统的核心部件,它采集电机控制系统信号、加速踏板信号、制动踏板信号及其他部件信号,根据驾驶员的驾驶意图综合分析并做出相应判断后,计算出运行所需要的电机输出转矩等参数,从而协调各个动力部件的运动,保障电动汽车的正常行驶。
此外,可以通过充电和制动能量回收等实现较高的能量效率。
在完成能量和动力控制的同时,还监控下层的各部件控制器的动作,它对汽车的正常行驶、电池能量的制动回馈、网络管理、故障诊断与处理、车辆状态监控等功能起着关键作用。
1
:提出一种SAR图像目标识别新方法。
首次引入BM3D方法,用于滤除原始图像中的相干斑噪声,BM3D结合了空间域和变换域去噪的优势,滤波性能优异。
在特征提取步骤,将低阶Hu矩与高阶Zernike矩组合,Hu矩描述目标的粗略信息,高阶Zernike矩描述目标的细节信息,因此组合矩能够更加全面而细致地表达目标特性。
使用组合矩特征训练SVM分类器,对含噪的SAR图像进行识别实验。
实验结果表明:本文方法的识别率高达98.90%,优于已有的SAR目标识别方法
2023/12/21 8:25:57 607KB 目标识别
1
第1章绪论1.1什么叫数理统计学1.2数理统计的若干基本概念1.3统计量习题一第2章抽样分布及若干预备知识2.1引言2.2正态总体样本均值和样本方差的分布*2.3次序统计量的分布2.4X2分布,t分布和F分布2.5统计量的极限分布*2.6指数族2.7充分统计量*2.8完全统计量习题二第3章点估计3.1引言3.2矩估计3.3极大似然估计*3.4一致最小方差无偏估计3.5Cramer-Rao不等式习题三第4章区间估计4.1区间估计的基本概念4.2枢轴变量法——正态总体参数的置信区间4.3枢轴变量法——非正态总体参数的置信区间4.4Fisher的信仰推断法4.5容忍区间与容忍限习题四第5章参数假设检验5.1假设检验的若干基本概念5.2正态总体参数的假设检验5.3假设检验与区间估计*5.4一致最优检验与无偏检验5.5似然比检验
2023/12/20 13:29:46 60.49MB 统计
1
通过该Matlab程序可以求取用于描述图像纹理特征的灰度共生矩阵参数(能量、熵、惯性矩、相关性)。
可以分别求取0,45°,90°,135°方向上的特征参数,同时可以求出这些特征参数的平均值与标准差。
2023/12/6 9:40:38 4KB 灰度共生矩阵
1
永磁无刷直流电机转矩脉动抑制的仿真研究西北工业大学的硕士论文
2023/11/19 22:34:13 4.9MB 永磁无刷直流电机 转矩脉动
1
基于内容的图像检索技术:1、基于颜色的图像检索:用的是二分K-means算法实现的2、基于纹理的图像检索:用的是灰度共生矩阵实现的3、基于形状的图像检索:用的是形状不变矩法实现的语言:python工具:VScode数据库:没用数据库,图像特征值直接放在txt文件里图像来源:Corel图像库中2000幅图像(资源里放在image.orig文件夹里)该项目可以直接使用!
1
基于MATLAB的处理图片,图片处理包括滤波,边缘处理,最后提取图片的特征值,不变矩特征值
2023/11/5 6:47:45 4KB 图形处理 不变矩
1
用于边缘检测的很多方法,并且考虑的精度要求用到了亚像素,比如空间矩的方法
2023/11/4 22:12:12 14.51MB 亚像素
1
共 165 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡