包含图片和相应的点云文件,适用于相机与雷达融合检测算法仿真,点云文件格式为.bin,图片为JPG,数据文件下载。
2024/4/2 5:04:14 378.07MB 图片 点云 传感器融合
1
PFLD算法,目前主流数据集上达到最高精度、ARM安卓机140fps,模型大小仅2.1M!
2024/3/23 19:46:39 6.04MB PFLD
1
13W的DGA域名样本可以用来训练一些DGA的检测算法,包含了各大病毒样本
2024/3/12 8:31:52 17.85MB DGA 域名清单 DGA DomainLi
1
目标检测(ObjectDetection)是计算机视觉领域的基本任务之一,学术界已有将近二十年的研究历史。
近些年随着深度学习技术的火热发展,目标检测算法也从基于手工特征的传统算法转向了基于深度神经网络的检测技术。
从最初2013年提出的R-CNN、OverFeat,到后面的Fast/FasterR-CNN,SSD,YOLO系列,再到2018年最近的Pelee。
短短不到五年时间,基于深度学习的目标检测技术,在网络结构上,从twostage到onestage,从bottom-uponly到Top-Down,从singlescalenetwork到featurepyramidnetwork,从面向PC端到面向手机端,都涌现出许多好的算法技术,这些算法在开放目标检测数据集上的检测效果和性能都很出色。
2024/3/11 5:24:12 3.58MB 深度学习 目标检测
1
定义的模板函数,可实现多个边缘检测算法,适合初学者
2024/3/6 17:27:03 11.07MB 边缘检测算法
1
一种新的cfar检测算法,适用于sar图像,测试结果还不错。
2024/3/5 6:37:41 3KB matlab
1
 针对帧差分法易产生空洞以及背景减法不能检测出与背景灰度接近的目标的问题,提出了一种将背景减和帧差法相结合的运动目标检测算法。
首先利用连续两帧图像进行背景减法得到两种差分图像,并用最大类间与类内方差比法得到合适的阈值将这两种差分图像二值化,然后将得到的两种二值化图像进行或运算,最后利用图像形态学滤波得到准确的运动目标。
实验结果表明,该算法简单、易实现、实时性强。
1
毕业课程设计,绝对原创。
主要用到的是边缘检测(三种算子),最佳阀值二值化,霍夫转换这三种方面的算法。
用的是最基本的编程方法。
程序最后还有一段废代码,是我遵循边缘检测-检测边缘点-短线连接-长线连接-直线拟合-霍夫转换。
这个思路做的,可惜没有得到老师的指导,直做到了长线连接这里,有兴趣的同学可以看看。
代码虽然乱,不过还是有挺多注释的,如果真的不能理解可以直接留言。
论文也传上来了,我的可不是优秀论文,万勿模仿。

否则后果自负。
2024/2/13 23:22:13 864KB 图像处理,c#,直线检测
1
本人花了300块钱购买的图像处理教程-带开发版。
保证是一手资料,在别处你指定找不到。
7.HDL-VIPCMOS视频图像算法处理.................................................1087.1.Bingo版HDL-VIP时序约定.......................................................1087.1.1.VIP_Image_Processor接口约定............................................1087.1.2.VIP_Image_Processor时序约定............................................1117.2.【VGA】RGB888转YCbCr444算法的HDL-VIP实现..........1127.2.1.RGB888转YCbCr介绍........................................................1127.2.2.RGB888转YCbCr的HDL实现..........................................1137.2.3.RGB888转YCbCr功能测试................................................1187.3.【VGA】YCbCr422转RGB888的HDL-VIP实现..................1217.3.1.ITU-RBT.656格式简说.......................................................1217.3.2.YUV/YCbCr视频格式简说..................................................1237.3.3.YUV422格式的配置与拼接捕获.........................................1247.3.4.YUV422转YUV444的HDL-VIP实现..............................1257.3.5.YUV444转RGB888的HDL-VIP实现...............................1287.3.6.YCbCr422转RGB888功能测试..........................................1327.4.【USB】RGB888转Gray灰度的HDL-VIP实现.....................1357.5.【USB】YCbCr422转Gray灰度HDL-VIP实现.....................1377.6.【USB】灰度图像的均值滤波算法的HDL-VIP实现..............1387.6.1.均值滤波算法介绍.................................................................1387.6.2.3*3像素阵列的HDL实现...................................................138既然选择了HDL-VIP,便不顾风雨兼程,一路走下去……7.6.3.Mean_Filter均值滤波算法的实现........................................1447.7.【USB】灰度图像的中值滤波算法的HDL-VIP实现..............1497.7.1.中值/均值滤波对比...............................................................1497.7.2.中值滤波算法的HDL实现..................................................1507.8.【USB】灰度图像的Sobel边缘检测算法的HDL-VIP实现...1577.8.1.边缘检测算法介绍.................................................................1577.8.2.Sobel边缘检测算法研究......................
2024/2/9 13:02:26 10.38MB fpga 图像处理 视频处理
1
图像处理中,已知一系列圆上的点,计算圆心和半径。
具体算法描述可以参考文献以下文献。
岳健《一种改进的Hough圆检测算法》应用科技2006年本类完全按照以上文献描述的算法编写。
2024/2/7 0:44:09 12KB C# Hough
1
共 194 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡