目录第1章线性神经网络的工程应用1.1系统辨识的MATLAB实现1.2自适应系统辨识的MATLAB实现1.3线性系统预测的MATLAB实现1.4线性神经网络用于消噪处理的MATLAB实现第2章神经网络预测的实例分析2.1地震预报的MATLAB实现2.1.1概述2.1.2地震预报的MATLAB实例分析2.2交通运输能力预测的MATLAB实现2.2.1概述2.2.2交通运输能力预测的MATLAB实例分析2.3农作物虫情预测的MATLAB实现2.3.1概述2.3.2农作物虫情预测的MATLAB实例分析2.4基于概率神经网络的故障诊断2.4.1概述2.4.2基于PNN的故障诊断实例分析2.5基于BP网络和Elman网络的齿轮箱故障诊断2.5.1概述2.5.2基于BP网络的齿轮箱故障诊断实例分析2.5.3基于Elman网络的齿轮箱故障诊断实例分析2.6基于RBF网络的船用柴油机故障诊断2.6.1概述2.6.2基于RBF网络的船用柴油机故障诊断实例分析第3章BP网络算法分析与工程应用3.1数值优化的BP网络训练算法3.1.1拟牛顿法3.1.2共轭梯度法3.1.3LevenbergMarquardt法3.2BP网络的工程应用3.2.1BP网络在分类中的应用3.2.2函数逼近3.2.3BP网络用于胆固醇含量的估计3.2.4模式识别第4章神经网络算法分析与实现4.1Elman神经网络4.1.1Elman神经网络结构4.1.2Elman神经网络的训练4.1.3Elman神经网络的MATLAB实现4.2Boltzmann机网络4.2.1BM网络结构4.2.2BM网络的规则4.2.3用BM网络解TSP4.2.4BM网络的MATLAB实现4.3BSB模型4.3.1BSB神经模型概述4.3.2BSB的MATLAB实现第5章预测控制算法分析与实现5.1系统辨识5.2自校正控制5.2.1单步输出预测5.2.2最小方差控制5.2.3最小方差间接自校正控制5.2.4最小方差直接自校正控制5.3自适应控制5.3.1MIT自适应律5.3.2MIT归一化算法第6章改进的广义预测控制算法分析与实现6.1预测控制6.1.1基于CARIMA模型的JGPC6.1.2基于CARMA模型的JGPC6.2神经网络预测控制的MATLAB实现第7章SOFM网络算法分析与应用7.1SOFM网络的生物学基础7.2SOFM网络的拓扑结构7.3SOFM网络学习算法7.4SOFM网络的训练过程7.5SOFM网络的MATLAB实现7.6SOFM网络在实际工程中的应用7.6.1SOFM网络在人口分类中的应用7.6.2SOFM网络在土壤分类中的应用第8章几种网络算法分析与应用8.1竞争型神经网络的概念与原理8.1.1竞争型神经网络的概念8.1.2竞争型神经网络的原理8.2几种联想学习规则8.2.1内星学习规则8.2.2外星学习规则8.2.3科荷伦学习规则第9章Hopfield神经网络算法分析与实现9.1离散Hopfield神经网络9.1.1网络的结构与工作方式9.1.2吸引子与能量函数9.1.3网络的权值设计9.2连续Hopfield神经网络9.3联想记忆9.3.1联想记忆网络9.3.2联想记忆网络的改进9.4Hopfield神经网络的MATLAB实现第10章学习向量量化与对向传播网络算法分析与实现10.1学习向量量化网络10.1.1LVQ网络模型10.1.2LVQ网络学习算法10.1.3LVQ网络学习的MATLAB实现10.2对向传播网络10.2.1对向传播网络概述10.2.2CPN网络学习及规则10.2.3对向传播网络的实际应用第11章NARMAL2控制算法分析与实现11.1反馈线性化控制系统原理11.2反馈线性控制的MATLAB实现11.3NARMAL2控制器原理及实例分析11.3.1NARMAL2控制器原理11.3.2NARMAL2控制器实例分析第12章神经网络函数及其导函数12.1神经网络的学习函数12.2神经网络的输入函数及其导函数12.3神经网络的性能函数及其导函数12.3.1性能函数12.3.2性能函数的导函数第13章Simulink神经网络设计13.1Simulink交互式仿真集成环境13.1.1Simulink模型创建1
2024/3/1 2:25:47 10.12MB MATLAB R2016a 神经网络 案例分析
1
对于RBF神经网路模型,利用粒子群优化算法进行对权值优化,达到准确的预测效果!
2024/2/27 15:23:12 29.92MB PSO-RB
1
行人检测系统的权值文件,用此文件可以恢复行人检测系统的网络参数
2024/2/19 17:58:33 115.69MB 深度学习 行人检测
1
用Visualc++编写的一个简单的校园导游系统是我们数据结构的课程设计用mgraphinitgraph()函数来初始化图,使用字符串的函数strcpy来初始化信息和名称,再给各弧的权值赋值,由于全部赋值在找路径的过程中太多了,所以只给部分赋值了。
用intlocatevex(mgraphc,intv)来查找景点在图中的序号(由于之后继续增加或者减少结点)两景点间的所有路径用函数intallpath(mgraphc)找到所有的路径voidpath(mgraphc,intm,intn,intk)用于打印序号为m,n景点间的一条路径在其中,当走完一条路径后,将其存储在d[k]中,直到d[k]==n时输出这条路径,然后跳出,把d[k]点的visited设为0,继续进行下个顶点。
直至到所有的顶点都完成。
用voidshortestpath_dij(mgraphc)函数来计算两个顶点间的最短路径,使用迪克斯特拉算法用voidshortestpath_floyd(mgraphc)函数来计算两个顶点间的最短路径,使用floyd算法
2024/2/10 13:36:07 19KB 导游系统
1
Kohonen神经网络算法工作机理为:网络学习过程中,当样本输入网络时,竞争层上的神经元计算输入样本与竞争层神经元权值之间的欧几里德距离,距离最小的神经元为获胜神经元。
调整获胜神经元和相邻神经元权值,使获得神经元及周边权值靠近该输入样本。
通过反复训练,最终各神经元的连接权值具有一定的分布,该分布把数据之间的相似性组织到代表各类的神经元上,使同类神经元具有相近的权系数,不同类的神经元权系数差别明显。
需要注意的是,在学习的过程中,权值修改学习速率和神经元领域均在不断较少,从而使同类神经元逐渐集中。
2024/1/20 1:52:34 85KB Kohonen算法 matlab 神经网络
1
Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。
主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
本实例实现了求最小路径的权值还能绘出最小路径的走法;
2023/12/27 22:38:26 59KB 最短路径, Dijkstra算法
1
一个完整的系统应具有以下功能:(1)I:初始化(Initialization)。
从终端读入字符集大小n,以及n个字符和n个权值,建立赫夫曼树,并将它存于文件hfmTree中。
(2)E:编码(Encoding)。
利用已建好的赫夫曼树(如不在内存,则从文件hfmTree中读入),对文件ToBeTran中的正文进行编码,然后将结果存入文件CodeFile中。
(3)D:译码(Decoding)。
利用已建好的赫夫曼树将文件CodeFile中的代码进行译码,结果存入文件Textfile中。
(4)P:印代码文件(Print)。
将文件CodeFile以紧凑格式显示在终端上,每行50个代码。
同时将此字符形式的编码文件写入文件CodePrin中。
(5)T:印赫夫曼树(Treeprinting)。
将已在内存中的赫夫曼树以直观的方式(比如树)显示在终端上,同时将此字符形式的赫夫曼树写入文件TreePrint中。
2023/12/12 19:51:52 124KB 数据结构 哈夫曼
1
这个程序主要是利用遗传算法优化BP神经网络,以优化BP网络的权值和阈值
2023/11/30 8:45:27 52KB 遗传神经网络
1
本课题主要应用非欧氏距离进行距离变换,针对于不同特征的二值图像,每种距离变换可以选用不同权值的模版进行目标的骨架抽取。
其效果的优劣在与欧式距离的误差和运算速度的快慢之间权衡。
2023/11/24 7:57:51 2KB 骨架
1
不用MATLAB的工具箱写的bp神经网络代码,可以深入理解bp神经网络的权值与阈值。
2023/11/23 17:04:39 6KB 不使用工具箱
1
共 133 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡