SVM参数寻优,寻找最佳的C和g,还可以做数据集的交叉验证。
2023/8/2 2:37:32 3KB SVM寻优
1
1stOpt(FirstOptimization)世界领先的非线性曲线拟合,综合优化分析计算软件平台。
是七维高科有限公司(7D-SoftHighTechnologyInc.)独立开发,拥有完全自主知识产权的一套数学优化分析综合工具软件包。
在非线性回归,曲线拟合,非线性复杂工程模型参数估算求解等领域傲视群雄,首屈一指,居世界领先地位。
除去简单易用的界面,其计算核心是基于七维高科有限公司科研人员十数年的革命性研究成果【通用全局优化算法】(UniversalGlobalOptimization-UGO),该算法之最大特点是克服了当今世界上在优化计算领域中使用迭代法必须给出合适初始值的难题,即用户勿需给出参数初始值,而由1stOpt随机给出,通过其独特的全局优化算法,最终找出最优解。
以非线性回归为例,目前世界上在该领域最有名的软件工具包诸如OriginPro,Matlab,SAS,SPSS,DataFit,GraphPad,TableCurve2D,TableCurve3D等,均需用户提供适当的参数初始值以便计算能够收敛并找到最优解。
如果设定的参数初始值不当则计算难以收敛,其结果是无法求得正确结果。
而在实际应用当中,对大多数用户来说,给出(猜出)恰当的初始值是件相当困难的事,特别是在参数量较多的情况下,更无异于是场噩梦。
而1stOpt凭借其超强的寻优,容错能力,在大多数情况下(大于90%),从任一随机初始值开始,都能求得正确结果。
2023/7/14 8:10:48 5.44MB 1stop
1
1stOpt(FirstOptimization)是七维高科有限公司(7D-SoftHighTechnologyInc.)独立开发,拥有完全自主知识产权的一套数学优化分析综合工具软件包。
在非线性回归,曲线拟合,非线性复杂工程模型参数估算求解等领域傲视群雄,首屈一指,居世界领先地位。
除去简单易用的界面,其计算核心是基于七维高科有限公司科研人员十数年的革命性研究成果【通用全局优化算法】(UniversalGlobalOptimization-UGO),该算法之最大特点是克服了当今世界上在优化计算领域中使用迭代法必须给出合适初始值的难题,即用户勿需给出参数初始值,而由1stOpt随机给出,通过其独特的全局优化算法,最终找出最优解。
以非线性回归为例,目前世界上在该领域最有名的软件工具包诸如OriginPro,Matlab,SAS,SPSS,DataFit,GraphPad,TableCurve2D,TableCurve3D等,均需用户提供适当的参数初始值以便计算能够收敛并找到最优解。
如果设定的参数初始值不当则计算难以收敛,其结果是无法求得正确结果。
而在实际应用当中,对大多数用户来说,给出(猜出)恰当的初始值是件相当困难的事,特别是在参数量较多的情况下,更无异于是场噩梦。
而1stOpt凭借其超强的寻优,容错能力,在大多数情况下(大于90%),从任一随机初始值开始,都能求得正确结果。

2023/6/29 4:02:58 7.09MB 非线性 数据处理
1
利用单纯形优化算法,用MATLAB编程对PID参数进行寻优
2023/6/12 20:02:34 26KB 单纯形法 PID
1
针对网络安全态势预测,为了提高预测精度和预测算法的收敛速度,采用一种改进的粒子群算法来优化径向基函数神经网络。
首先,PSO的惯性权重因子按一条开口向左的抛物线递减,在保证全局寻优的同时又增强了局部搜索能力;
其次,通过权重因子的调节自动寻优,并将搜寻到的全局最优值解码成RBF的网络参数;
最后,通过优化的RBF网络进行网络安全态势预测。
仿真实验表,改进后的算法能较准确地预测网络安全态势。
与BP算法和RBF算法相比,本文算法在预测精度上有所提高,同时收敛速度加快,能达到更好的预测效果。
2023/6/8 12:36:13 932KB 改进粒子群 rbf
1
一、引言自适应噪声抵消技术是一种能够很好的消除背景噪声影响的信号处理技术,应用自适应噪声抵消技术,可在未知外界干扰源特征,传递途径不断变化,背景噪声和被测对象声波相似的情况下,能够有效地消除外界声源的干扰获得高信噪比的对象信号。
从理论上讲,自适应干扰抵消器是基于自适应滤波原理的一种扩展,简单的说,把自适应滤波器的期望信号输入端改为信号加噪声干扰的原始输入端,而它的输入端改为噪声干扰端,由横向滤波器的参数调节输出以将原始输入中的噪声干扰抵消掉,这时误差输出就是有用信号了。
在数字信号采集、处理中,线性滤波是最常用的消除噪声的方法。
线性滤波容易分析,使用均方差最小准则的线性滤波器能找到闭合解,若噪声干扰类型为高斯噪声时,可达到最佳的线性滤波效果。
计算机论文www.lunwendingzhi.com;
机械毕业论文www.lunwenwanjia.com在实际的数字信号采集中,叠加于信号的噪声干扰往往不是单一的高斯噪声,而线性滤波器所要求的中等程度噪声偏移,使线性滤波器对非高斯噪声的滤波性能下降,为克服线性滤波器的缺点,往往采用非线性滤波器,所以本文采用神经网络对信号进行滤波处理。
二、基于BP算法和遗传算法相结合的自适应噪声抵消器在本文中,作者主要基于自适应噪声对消的原理对自适应算法进行研究,提出了一种新的算法,即BP算法和遗传算法相结合的自适应算法。
作者对BP网络的结构及算法作了一个系统的综述,分析了BP算法存在的主要缺陷及其产生的原因。
传统的BP网络既然是一个非线性优化问题,这就不可避免地存在局部极小问题,网络的极值通过沿局部改善的方向一小步进行修正,力图达到使误差函数最小化的全局解,但实际上常得到的使局部最优点。
管理毕业论文网www.yifanglunwen.com;
音乐毕业论文www.xyclww.com;
英语毕业论文www.lanrenbanjia.com;
学习过程中,下降慢,学习速度缓,易出现一个长时间的误差平坦区,即出现平台。
通过对遗传算法文献的分析、概括和总结,发现遗传算法与其它的搜索方法相比,遗传算法(GA)的优点在于:不需要目标函数的微分值;
并行搜索,搜索效率高;
搜索遍及整个搜索空间,容易得到全局最优解。
所以用GA优化BP神经网络,可使神经网络具有进化、自适应的能力。
BP-GA混合算法的方法出发点为:经济论文www.youzhiessay.com教育论文www.hudonglunwen.com;
医学论文网www.kuailelunwen.com;
(1)利用BP神经网络映射设计变量和目标函数、约束之间的关系;
(2)用遗传算法作实现优化搜索;
(3)遗传算法中适应度的计算采用神经网络计算来实现。
BP-GA混合算法的设计步骤如下:(1)分析问题,提出目标函数、设计变量和约束条件;
(2)设定适当的训练样本集,计算训练样本集;
(3)训练神经网络;
(4)采用遗传算法进行结构寻优;
(5)利用训练好的神经网络检验遗传算法优化结果。
若满足要求,计算结束;
若误差不满足要求,将检验解加入到训练样本集中,重复执行3~5步直到满足要求。
通过用短时傅立叶信号和余弦信号进行噪声对消性能测试,在单一的BP算法中,网络的训练次数、学习速度、网络层数以及每层神经元的节点数都是影响BP网络的重要参数,通过仿真实验可以发现,适当的训练次数可以使误差达到极小值,但是训练次数过多,训练时间太长,甚至容易陷入死循环,或者学习精度不高。
学习速度不能选择的太大,否则会出现算法不收敛,也不能选择太小,会使训练过程时间太长,一般选择为0.01~0.1之间的值,再根据训练过程中梯度变化和均方误差变化值确定。
基于梯度下降原理的BP算法,在解空间仅进行单点搜索,极易收敛于局部极小,而GA的众多个体同时搜索解空间的许多点,因而可以有效的防止搜索过程收敛于局部极小,只有算法的参数及遗传算子的操作选择得当,算法具有极大的把握收敛于全局最优解。
使用遗传算法需要决定的运行参数中种群大小表示种群中所含个体的数量,种群较小时,可提高遗传算法的运算速度,但却降低了群体的多样性,可能找不出最优解;
种群较大时,又会增加计算量,使遗传算法的运行效率降低。
一般取种群数目为20~100;
交叉率控制着交叉操作的频率,由于交叉操作是遗传算法中产生新个体的主要方法,所以交叉率通常应取较大值,但若过大的话,又可能破坏群体的优良模式,一般取0.4~0.99;
变异率也是影响新个体产生的一个因素,变异率小,产生个体少,变异率太大,又会使遗传算法变成随机搜索,一般取变异率为0.0001~0.1。
由仿真结果得知,GA与BP算法的混合算法不论是在运行速度还是在运算精度上都较单纯的BP算法有提高,去噪效果更加明显,在信噪比的改善程度上,混合算法的信噪
2023/6/7 6:07:05 2KB BP算法 遗传算法 matlab 源码
1
matlab罕用代码大全,帮手你科研,论文实证阐发,数模竞赛第44章条理阐发法第45章灰色联系瓜葛度第46章熵权法第47章主成份阐发第48章主成份回归第49章偏最小二乘第50章垂垂回归阐发第51章模拟退火第52章RBF,GRNN,PNN-神经收集第53章相助神经收集与SOM神经收集第54章蚁群算法tsp求解第55章灰色料想GM1-1第56章模糊综合评估第57章交织验证神经收集第58章多项式拟合plotfit第59章非线性拟合lsqcurefit第60章kmeans聚类第61章FCM聚类第62章arima功夫序列第63章topsis第1章BP神经收集的数据分类——语音特色信号分类第2章BP神经收集的非线性体系建模——非线性函数拟合第3章遗传算法优化BP神经收集——非线性函数拟合第4章神经收集遗传算法函数极值寻优——非线性函数极值寻优第5章基于BP_Adaboost的强分类器方案——公司财政预警建模第6章PID神经元收集解耦抑制算法——多变量体系抑制第7章RBF收集的回归--非线性函数回归的实现第8章GRNN收集的料想----基于狭义回归神经收集的货运量料想第9章离散Hopfield神经收集的遥想影像——数字识别第10章离散Hopfield神经收集的分类——高校科研才气评估第11章络续Hopfield神经收集的优化——遨游商下场优化盘算第12章初始SVM分类与回归第13章LIBSVM参数实例详解第14章基于SVM的数据分类料想——意大利葡萄酒品种识别第15章SVM的参数优化——若何更好的提升分类器的成果第16章基于SVM的回归料想阐发——上证指数收盘指数料想.第17章基于SVM的信息粒化时序回归料想——上证指数收盘指数变更趋向以及变更空间料想第18章基于SVM的图像联系-真玄色图像联系第19章基于SVM的手写字体识别第20章LIBSVM-FarutoUltimate货物箱及GUI版本介绍与使用第21章自结构相助收集在方式分类中的使用—患者癌症发病料想第22章SOM神经收集的数据分类--柴油机缺陷诊断第23章Elman神经收集的数据料想----电力负荷料想模子钻研第24章概率神经收集的分类料想--基于PNN的变压器缺陷诊断第25章基于MIV的神经收集变量遴选----基于BP神经收集的变量遴选第26章LVQ神经收集的分类——乳腺肿瘤诊断第27章LVQ神经收集的料想——人脸朝向识别第28章遴选树分类器的使用钻研——乳腺癌诊断第29章极限学习机在回归拟合及分类下场中的使用钻研——比力试验第30章基于随机森林脑子的组合分类器方案——乳腺癌诊断第31章脑子进化算法优化BP神经收集——非线性函数拟合第32章小波神经收集的功夫序列料想——短时交通流量料想第33章模糊神经收集的料想算法——嘉陵江水质评估第34章狭义神经收集的聚类算法——收集入侵聚类第35章粒子群优化算法的寻优算法——非线性函数极值寻优第36章遗传算法优化盘算——建模自变量降维第37章基于灰色神经收集的料想算法钻研——定单需要料想第38章基于Kohonen收集的聚类算法——收集入侵聚类第39章神经收集GUI的实现——基于GUI的神经收集拟合、方式识别、聚类第40章动态神经收集功夫序列料想钻研——基于MATLAB的NARX实现第41章定制神经收集的实现——神经收集的本能化建模与仿真第42章并背运算与神经收集——基于CPU/GPU的并行神经收集运算第43章神经收集高效编程本领——基于MATLABR2012b新版本特色的谈判
2023/5/9 23:33:27 12.05MB matlab 神经网络
1
基于反对于向量机负荷功率料想,使用粒子群算法举行参数寻优,供参考
2023/4/25 8:50:03 48KB 负荷预测
1
NSGA非枚举排序遗传算法便是一种以底子遗传算法为底子的多目的寻优策略,由于其在多目的寻优规模的上风,成为人们的钻研热门。
2023/3/29 12:29:39 3KB 遗传算法 MATLAB
1
算子课上我讲的PPT,主题是查分演化盘算,用到了变异算子,交织算子以及遴选算子。
复盘阐发差分进化与遗传算法相似,这一点,对于遗传算法略微知道的人都市有如许的疑难。
该PPT未对于两者的差距以及联系举行阐发。
我对于两者都有未必的知道,并做过两者的约莫实现,理当在这方面做出思考。
遗憾的是,演讲竣当时,教师问到这个下场,我不做出较好的回答。
介绍完算法的原理后,举了一个非凸函数寻优的例子,并且揭示了函数的3D图像以及最优函数值演化曲线,这一点很好。
介绍图像时,起首要介绍坐标轴的含意以及单元,这一点不照料好。
很明晰的一个缺陷是:贫乏该算法在产业上的使用实例。
让人感应该算法只存在于纸面上,却在实际使用价钱。
2023/3/29 8:28:46 3.37MB 差分进化
1
共 105 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡