验证码识别论文,共9篇,涉及文本,图像图像,中文汉字等等。
主要使用传统机器学习方法以及人工智能等等
2023/8/18 12:05:20 8.74MB 验证码识别
1
一个关于人体行为识别的PPT,使用公开的数据集,使用不平衡学习的方法与经典的机器学习方法进行比较。
2023/8/17 4:04:02 9.99MB 类别不平衡 人体行为识别
1
利用机器学习方法(分类)实现静态场景下的测试车辆检测 利用C语言或者Open_CV库,或者是MATLAB软件编写实现静态场景下的测视车辆检测。
需使用机器学习方法。
代码可以通过一个主函数直接运行出实验结果。
 Data文件夹中包含train_34x94(训练集)和test(测试集)两个文件夹。
其中,train_34x94文件夹中的数据用于训练模型,包含pos文件夹(内有550个正例样本)和neg文件夹(内有500个负例样本);
Test文件夹中的数据用于测试。
 在Test测试集中的总体检测性能的评价指标为Recall、Precision和F-measure,写出对算法的性能评价和对实现中遇到问题的理解。
1
卡耐基梅隆大学的RichCaruana写的多任务学习方法,里面包含在图像、医疗等领域多任务学习的案例。
是机器学习领域里比较基础理论的一本书。
2023/7/6 19:18:16 2.41MB 多任务学习 multi-task learn 基础理论
1
清华大学的袁春老师制作的《统计学习方法》的课件,我对所有ppt进行了合并,很方便集体打印。
2023/7/2 22:37:20 28.07MB 统计学习方法 机器学习
1
利用python处理UCI鲍鱼年龄预测数据,运用了经典回归、决策树、随机森林、SVM等十余种机器学习方法,附有数据集以及详细python代码
1
本工具为复旦大学计算机学院机器人研究实验室开发的基于深度学习的中文自然语言处理工具FudanDNN-NLP2.0,该工具可用于中文分词、自定义词汇、文本规范化、命名识别、词性标注、语义分析,用户可以根据需要重新训练或者精调模型。
深度学习方法的优点在于不需要预先根据任务进行特征选择(特征工程),系统所需参数较少(节省内存开销),并且解码速度(实际使用)远远快于其它相似性能的系统。
2023/5/30 14:42:47 58.86MB 深度学习
1
第一章统计学习方法概论第二章感知机第三章k近邻法第四章朴素贝叶斯法第五章决策树-2016-ID3CART第六章Logistic回归第七章支持向量机第八章提升方法第九章EM算法及其推广第十章隐马尔科夫模型第十一章条件随机场第十二章统计学习方法总结
1
由PoonamSharma和AkanshaSingh所写:深度学习在各种机器学习和计算机视觉应用中取得了显着的成功。
学习允许多个处理层自己学习功能,与传统的机器学习方法相反,而传统的机器学习方法无法以自然方式处理数据。
深度卷积网络在处理图像和视频方面表现出色,而循环神经网络在顺序数据方面取得了巨大成功。
本文回顾了迄今为止在该领域所做的所有方面和研究以及未来的可能性。
2023/3/8 10:45:36 293KB 深度神经网
1
三种机器学习方法和使用CNN训练FashionMNIST的功能比较,三种机器学习方法分别为:随机森林、KNN、朴素贝叶斯。
包含完整代码和测试文档
2023/3/6 18:31:53 30.39MB 机器学习 深度学习 卷积
1
共 83 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡