最近几年,例如YAGO和DBpedia等大规模知识库发展有了很大的进步。
知识库提供了大量的不同种类的实体信息,如人、国家、河流、城市大学等等,同时知识库包含了大量的在实体(entity)间的关系既事实(fact)。
当今的知识库包含的数据量是巨大的通常有百万个实体和上亿个描述实体间关系的事实数据。
虽然目前的知识库存在大量的实体和事实数据,但是这样大规模的数据仍然不完整。
目前构建知识库的方法主要有两种,一种是从大量的文本中抽取事实但这种方法必然会带来大量的噪声数据,第二是人工扩展,但这样的方法对于时间的开销是极大的。
如果确保一个知识库是完整的则必须花费很大的努力来抽取大量的事实,并检查事实的正确性,因为只有正确的事实加入到知识库中才是有意义的。
同时知识库的本身由于有足够的信息可以推理出更多的新的事实。
例如有这样一个例子,一个知识库包含一组事实是孩子c有一个妈妈m,这样可以推理得出孩子妈妈的丈夫f很可能是孩子的父亲。
该逻辑规则形式化的描述如下:motherof(m,c)∧marriedTo(m,f)⟹fatherof(f,c)挖掘这种规则可帮助做一下四种事情:1、利用这种规则来推理出新的事实,而这些被挖掘出的新的事实可以使知识库更完整。
2、这些规则可以检测出知识库潜在的错误例如一个陈述是一个与一个男孩无关的人是这个男孩的父亲,这样的陈述很可能是错误的。
3、有很多推理工具依赖其他工具提供规则,所以这些被挖掘出来的规则可以用于推理。
4、这些规则描述一个普遍的规律,这些规律可以帮我我们理解分析知识库中的数据,如找到一些国家通常与说同一种语言的国家交易。
或结婚是一个对称关系,或使用同一个乐器的音乐家通常互相影响等等。
AMIE的目标是从RDF格式的知识库中挖掘如上所述的逻辑规则,在语义网(SemanticWeb)中存在大量的RDF知识库如YAGO、Freebase和DBpedia等。
这些知识库使用RDF三元组(S,P,O)提供二元关系(binaryrelation)的描述。
由于知识库一般只包含正例而(S,P,O)没有反例(S,¬P,O),所以RDF这样的知识库中仅能通过正例来推理。
进一步来说在RDF知识库上的操作是基于开放世界假设(OWA)的。
在开放世界假设下,一个事实没有在知识库中存在那么我们不能说这个事实是错误的,只能说这个陈述是未知的。
这与标准的数据库在封闭世界假设的设定有本质上的区别。
例如在知识库中没有包含marry(a,b),在封闭世界假设中我们可以得出这个a没有和b结婚而在开放世界假设下我们只能说a可能结婚了也可能单身。
压缩包内包含AMIE可运行源代码与相应文档资料,欢迎下载参考
2025/4/10 17:38:48 2.43MB 不完整 知识库 关联规则 数据挖掘
1
马尔科夫链matlab程序包。
马尔科夫链定义本身比较简单,它假设某一时刻状态转移的概率只依赖于它的前一个状态。
举个形象的比喻,假如每天的天气是一个状态的话,那个今天是不是晴天只依赖于昨天的天气,而和前天的天气没有任何关系。
当然这么说可能有些武断,但是这样做可以大大简化模型的复杂度,因此马尔科夫链在很多时间序列模型中得到广泛的应用,比如循环神经网络RNN,隐式马尔科夫模型HMM等,当然MCMC也需要它。
    如果用精确的数学定义来描述,则假设我们的序列状态是...Xt−2,Xt−1,Xt,Xt+1,......Xt−2,Xt−1,Xt,Xt+1,...,那么我们的在时刻Xt+1Xt+1的状态的条件概率仅仅依赖于时刻XtXt,即:P(Xt+1|...Xt−2,Xt−1,Xt)=P(Xt+1|Xt)P(Xt+1|...Xt−2,Xt−1,Xt)=P(Xt+1|Xt)    既然某一时刻状态转移的概率只依赖于它的前一个状态,那么我们只要能求出系统中任意两个状态之间的转换概率,这个马尔科夫链的模型就定了。
我们来看看下图这个马尔科夫链模型的具体的例子。
2025/4/8 19:03:14 15KB 马尔科夫链
1
文档内容包括:1.系统工作流程—活动图2.用例图及对应用例描述3.每个用例的顺序图4.状态图5.类图6.该系统的组件图与部署图7.对应的代码实现:8.持久类类图及关系模型
2025/4/7 3:21:45 535KB UML作业文档附
1
提供一种RGB和YUV值的转换工具,可很方便直观的查阅这这两者的对应关系,在需要查找这两种数值对比的用户会很好用。
2025/4/5 10:47:30 243KB RGB YUV 格式转换
1
实现对亲戚关系的计算,可以在data.txt自增自减关系链。
2025/4/5 4:26:20 16KB Java桌面应用
1
仿真在LTE中16QAM和64QAM信号的SNR与误码率间的关系。
即实现了误码率与SNR间的关系,又实现了误比特率与SNR间的关系,还实现了添加高斯白噪声时的实际效果与理论值间的差别比较
2025/4/2 5:14:38 2KB QAM SNR 误码 MATLAB
1
题目在下面,通过SPSS做的回归分析小论文,原理操作都很详细。
一:某公司在各地区销售一种特殊的化妆品。
该公司观测了15个城市在某季度内对该化妆品的销售量Y及各地区适合使用该化妆品的人数X1和人均收入X2,得到数据如表所示。
假设误差服从正态分布N(0,)试建立Y与X1,X2之间的线性回归方程并研究相应的统计推断问题(数据略)。
内容要求包括:(1)数据描述性分析,自变量与因变量线性关系预判断;
(2)回归分析,模型检验,系数检验;
(3)多重共线性检验,DW检验;
(4)残差分析。
二:下面是我国1990到2013年的一些经济数据,请做回归分析(数据略)。
2025/4/1 5:04:53 259KB data analysis
1
【新能源微电网】新能源微电网是由分布式电源、储能设备、能量转换装置等组成的微型发配电系统,能够在独立或并网状态下运行,具有自我控制、保护和管理能力。
它结合了新能源发电,如太阳能和风能,以提高能源利用率,尤其在偏远地区提供电力供应。
然而,新能源的不稳定性给微电网的运行带来了挑战,如发电量预测和电网管理的困难。
【人工智能神经网络】人工神经网络是人工智能的核心组成部分,模拟生物神经网络结构,用于解决复杂问题,如信息处理和学习。
在新能源微电网领域,神经网络主要用于处理非线性和复杂的预测任务,如风力发电量和电力负荷的预测。
主要的神经网络分词法有:神经网络专家系统分词法和神经网络分词法,前者结合了神经网络的自学特性与专家系统的知识,后者通过神经网络的内在权重来实现正确分词。
【RBF神经网络】径向基函数(RBF)神经网络是神经网络的一种,常用于预测任务。
它由输入层、隐藏层和输出层组成,其中隐藏层使用RBF作为激活函数,实现输入数据的非线性变换,从而适应复杂的数据模式。
在微电网中,RBF神经网络用于短期负荷预测,能有效处理非线性关系,降低外部因素对预测的干扰。
【微电网短期负荷预测】短期负荷预测对于微电网的能量管理和运行优化至关重要。
通过构建RBF神经网络模型,可以预测未来一定时间内的负荷变化。
预测模型的建立通常需要选择与负荷密切相关的输入数据,如时间、气温、风速等,并进行数据预处理。
MATLAB等工具可用于进行网络训练和仿真,以生成预测结果。
【风力发电预测】RBF神经网络同样适用于风力发电量的预测。
通过对风速、气压等相关因素的预测,可以估算微电网系统的风力发电潜力,帮助维持系统的稳定运行,减少风电波动对微电网的影响。
总结来说,人工智能神经网络,尤其是RBF神经网络,为解决新能源微电网中的挑战提供了有效工具。
通过精确预测新能源发电量和电力负荷,可以优化微电网的运行效率,确保其稳定性和自给自足的能力。
此外,这种技术还能促进可再生能源的有效利用,有助于推动能源行业的可持续发展。
1
1.虚函数是可以[New一个对象的时候要根据虚函数的函数体来填虚表;
而内联函数没有函数体,只是在预编译阶段展开]内联的,这样就可以减少函数调用的开销,提高效率(错误)2.一个类里可以同时存在[同一个类里无论什么函数都不能函数名和参数完全一样]参数和函数名都相同的虚函数与静态函数(错误)3.父类的析构函数是非虚的,但是子类的析构函数是虚的,delete子类指针(指向该子类对象)[特殊情况,参见题5],会调用父类的析构函数(正确)//任何情况下删除子类都会调用到父类的析构函数4.对于下面的类CA,sizeof(CA)=_B_:A.4B.8C.12D.16classCA{public:CA();virtual~CA();//因为有虚函数,所以会有4个字节的虚表指针private:intm_iTime;//成员变量4个字节public:intGetTime();intSetTime(intiTime);};5.下面这段程序,打印结果是_A_:A.1B.2C.3D.以上都不对intg_iCount=0;classCParent{public:CParent(){}~CParent(){g_iCount+=1;}};classCSon:publicCParent{public:CSon(){}~CSon(){g_iCount+=2;}};main(){CParent*p=newCSon();deletep[由于p被声明成父类指针,并且父类和子类的析构函数都非虚,因此delete操作只能根据p指针声明的类型来调用父类的析构函数];std::coutPrint();[由于父类和子类的Print函数都非虚,所以根据指针类型决定调用关系]}8.请问下面这段程序的输出结果是_C_:A.2,1,B.2,2,C.1,2,D.1,1,classCP
2025/3/28 16:17:55 392KB 华为 C++ 笔试题
1
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来一探究竟,抛砖引玉,欢迎大家提供更多的实现远程通讯的技术和原理的介绍。
要实现网络机器间的通讯,首先得来看看计算机系统网络通信的基本原理,在底层层面去看,网络通信需要做的就是将流从一台计算机传输到另外一
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡