我试图进行和在Rust中进行。
这是可怕的代码,请勿引用,复制或从中获得启发。
几乎可以肯定这是错误的,缓慢的并且不是惯用的。
2023/6/10 21:33:15 22KB rust image raytracing rayon
1
设计了一种基于全息光学元件的透视增强现实集成成像3D显示系统。
对基于反射体全息原理的全息光学元件的记录及再现做了理论分析,并通过搭建实验光路记录一块尺寸为20mm×20mm的全息光学元件。
该全息光学元件仅对满足布拉格条件的光线体现出微透镜阵列成像功能,再现出虚拟的3D图像,而真实3D物体发出的光线可以直接透过全息光学元件,因此该全息光学元件作为图像融合元件实现了真实3D物体与虚拟3D图像的融合。
该实验研制的透视增强现实3D显示系统能够再现出较好的虚拟3D图像,有效地融合虚拟3D图像和真实3D物体,实现增强现实的3D显示效果。
2023/6/1 2:28:40 6.79MB 全息 光学元件 增强现实 集成成像
1
手指静脉识别本领是一种新的生物特色识别本领,它是依据人类手指中行为的血液可排汇特定波长的光线,而使用特定波长光线敌手指举行映射,可取患上手指静脉的明晰图像。
2023/5/13 1:22:39 9.19MB 指静脉 指静脉识别 技术
1
jQuery大鱼吃小鱼游戏源代码基于jquery.1.11.3.min.js制作,丑陋的大海,光线的珊瑚。
吃小鱼了!放飞梦想,部份鱼群。
好玩的游戏,小鱼来吃呀!松散,这个品级过小,这个大的鱼扣除了人命!
2023/5/10 4:13:44 335KB jQuery 游戏 网页游戏
1
第1章电磁实际1.0引言1.1复函数体系1.2电磁场能量以及功率的思考1.3各向同性介质中波的传布1.4晶体中波的传布——折射率椭球1.5琼斯盘算及其在双折射晶体光学体系中的使用1.6电磁波的衍射习题参考文献第2章光线以及光束的传布2.0引言2.1透镜波导2.2光线在反射镜面间的传布2.3在类透镜介质中的光线2.4平方律折射率介质中的平稳方程2.5平均介质中的高斯光束2.6在类透镜介质中的基模高斯光束——ABCD定律2.7在透镜波导中的高斯光束2.8在平均介质中的高斯光束高阶模2.9在平方律折射率变更的介质中的高斯光束的高阶模2.10光波在二次型增益漫衍介质中的传布2.11椭圆高斯光束2.12傍轴A,B,C,D体系的衍射积分习题参考文献第3章光束在光纤中的传输3.0引言3.1圆柱坐标系中的平稳方程3.2阶跃折射率圆波导3.3线偏振模3.4光纤中的光脉冲传输与脉冲展宽3.5群速率色散的赔偿3.6空间衍射与功夫色散的类比3.7硅光纤中的损耗习题参考文献第4章光学共振腔4.0引言4.1法布里珀罗尺度具4.2用作光谱阐发仪的法布里珀罗尺度具4.3球面镜光学共振腔4.4模的平稳性判据4.5狭义共振腔中的方式——自洽法4.6光共振腔中的共振频率4.7光学共振腔中的损耗4.8光学共振腔——衍射实际方式4.9模耦合习题参考文献第5章辐射以及原子体系的相互传染5.0引言5.1原子能级之间的盲目跃迁——平均增宽以及非平均增宽5.2受激跃迁5.3排汇以及放大5.4χ′(ν)的推导5.5χ(ν)的物理意思5.6平均激光介质中的增益饱以及5.7非平均激光介质中的增益饱以及习题参考文献第6章激光振荡实际及其在络续区以及脉冲区的抑制6.0引言6.1法布里珀罗激光器6.2振荡频率6.3三能级以及四能级激光器6.4激光振荡器的功率6.5激光振荡器的最佳输入耦合6.6多模激光振荡器以及锁模6.7在平均增宽激光体系中的锁模6.8脉冲宽度的丈量以及啁啾脉冲的收缩6.9巨脉冲(调Q)激光器6.10多普勒增宽气体激光器中的烧孔效应以及兰姆突出习题参考文献第7章一些特殊的激光器体系7.0引言7.1抽运与激光器功能7.2红宝石激光器7.3掺钕钇铝石榴石(Nd3+:YAG)激光器7.4掺钕玻璃激光器7.5氦氖(HeNe)激光器7.6二氧化碳激光器7.7氩离子(Ar+)激光器7.8激基份子激光器7.9有机染料激光器7.10气体激光器的低压操作7.11掺铒硅基激光器习题参考文献第8章二次谐波暴发与参变振荡8.0引言8.1非线性极化的物理来源8.2非线性介质中波传布的公式8.3光的二次谐波暴发8.4激光共振腔内的二次谐波暴发8.5二次谐波暴发的光子模子8.6参变放大8.7参变放大的相位匹配8.8参变振荡8.9参变振荡的频率调谐8.10光参变振荡器中的输入功率以及抽运饱以及8.11频率上转换8.12准相位匹配习题参考文献第9章激光光束的电光调制9.0引言9.1电光效应9.2电光相位提前9.3电光振幅调制9.4光的相位调制9.5横向电光调制器9.6高频调制的思考9.7光束的电光偏转9.8电光调制——耦合波阐发9
2023/5/8 14:38:30 12.68MB 通信 光电 光电子
1
灰度拉伸又叫比力度拉伸,C#方面的代码CSDN彷佛尚未,同享下赚点分。
由于情景光线或者收集配置等原因,图像灰度常汇群集于某一小区间。
为便于查核以及处置,罕用分段线性变更曲线建树灰度映射来实现灰度拉伸使图像灰度拆穿包围较大区间。
2023/5/8 5:40:41 26KB 灰度拉伸 对比度拉伸 C# .net
1
使用此软件以前,起首要确保你的电脑已经装置的有SQL2000数据库起首装置“管家婆光线ⅡTOP+12.81”装置途中,遴选收集版就可,单机、门店、试用、盘问能够勾去掉,不装置。
装置实现后复制授权文件“GraspNet.exe”粘贴到法度圭表标准的装置目录“D:\GRASPⅡTOP+\”下交流拆穿包围掉源文件而后再运行桌面的快捷方式“管家婆光线ⅡTOP+收集版”就可使用。
(本版本已经导入十多少万数据压力测试,美满使用,耽忧下载。
2023/4/22 11:53:19 9.28MB 管家婆
1
与铁总运[2015]88号中国铁路总公司对于印发《铁路供电远动体系(SCADA)主站暂行本领前提》的告知.pdf不合
2023/4/21 17:39:11 1.55MB 光芒104
1
在中国安防产业中视频监控作为最弥留的信息患上到本领之一,能对于目的实用的提取是弥留而底子的下场,于是本文在此配景下,缭绕对于监控视频的前景目的实用的提取下场,钻研了对于1)动态配景、动态配景的前景目的提取,能在配景繁杂化的前提下,将行为的目的;
2)带发抖视频;
3)动态配景下多摄像头对于多目的提取;
4)涌现颇为责任视频的分辨等下场。
给出了在不合情景下的前景目的提取方案。
下场一是针对于动态配景且摄像头平稳的情景下,若何对于前景目的提取的下场。
在题目申请的底子上,经由对于附件2中多少组视频的阐发,咱们发现齐全前景目的的行为临时且光线明暗变更不明晰。
由于传统的Vibe算法能抑制鬼影然则运行下场不梦想,于是付与建树在帧差法上改善的Vibe算法模子求解下场。
并以及传统的Vibe算法做比力,下场展现改善的Vibe算法明晰优于传统的算法。
并且对于咱们的算法模子做了下场评估。
详尽数据参考评释与附录。
下场二是在配景为动态(若有水波的暴发)的情景下,对于前景目的的提取下场。
在此下场中,由于动态配景存在使患上提掏出的图像帧具备大宗的干扰噪声,对于前景目的的识别以及提取组成干扰,于是咱们提出一种基于全局外表不合型的行为目的检测法。
在用Vibe算法对于场景预检测的底子上,建树稠浊高斯模子分别对于前景以及配景举行全局外表建模,将行为目的检测进去,再引入超像素去噪,进一步优化下场。
详尽下场参考评释与附录。
下场三是在下场一、二底子上的进一步深入。
下场一及下场二是建树在摄像机自身平稳的底子上,而下场三则是在摄像机发抖的情景下。
由于摄像机发抖普通具备扭转战争移,于是咱们建树了坐标变更模子,以仿射变更作为模子底子,松散改善的高精度鲁棒的RANSAC算法提取前景目的,并比力灰度投影法,比力两种模子下场。
详尽下场不雅点释与附录。
下场四是对于前三个下场的综合使用。
使用基于稠浊高斯模子配景建模Vibe算法,对于前景目的举行提取;
选出具备明晰前景目的的参考帧,盘算参考帧中明晰前景目的所占的面积,并将此面积设定为阈值T,遍历齐全的视频帧,盘算其前景目的所占的面积,经由相减比力,判断明晰前景目的。
若判断为明晰前景目的则输入其地址视频帧中的帧号,并将明晰前景涌现的总帧数削减1。
下场五是针对于多摄像头多目的的协同跟踪下场。
在下场二的稠浊高斯模子底子上咱们建树了动态配景提取法,对于络续变更的配景举行实时更新。
再行使单应性解放法对于多目的暴发重叠征兆举行投影将重叠目的区并吞来,对于目的举行定位。
由于目的的络续行为,咱们付与粒子滤波法对于前景目的举行实时跟踪,经由多摄像头的协同通讯实现对于多前景目的的检测。
下场六是针对于监控视频中前景目的涌现颇为情景时候辨能否有颇为责任的下场。
在基于怪异展现的模子上,引入稠浊高斯模子用于学习不合尺度的行为特色法则,而后经由各个单高斯模子中的均值建树一个相似矩阵作为字典。
以测试阶段天生的核矢量为底子,用该部份特色的核矢量盘算基于怪异展现的重构倾向,并将其与已经设定的阈值举行比力,假如重构倾向大于阈值,则判为颇为。
1
浏览了三篇对于基于GPU与光线追踪的论文,写了的一些论文概述
2023/4/20 5:48:39 183KB GPU 光线追踪
1
共 105 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡