MATLAB神经网络43个案例分析源代码&数据《MATLAB神经网络43个案例分析》目录第1章BP神经网络的数据分类——语音特征信号分类第2章BP神经网络的非线性系统建模——非线性函数拟合第3章遗传算法优化BP神经网络——非线性函数拟合第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优第5章基于BP_Adaboost的强分类器设计——公司财务预警建模第6章PID神经元网络解耦控制算法——多变量系统控制第7章RBF网络的回归--非线性函数回归的实现第8章GRNN网络的预测----基于广义回归神经网络的货运量预测第9章离散Hopfield神经网络的联想记忆——数字识别第10章离散Hopfield神经网络的分类——高校科研能力评价第11章连续Hopfield神经网络的优化——旅行商问题优化计算第12章初始SVM分类与回归第13章LIBSVM参数实例详解第14章基于SVM的数据分类预测——意大利葡萄酒种类识别第15章SVM的参数优化——如何更好的提升分类器的性能第16章基于SVM的回归预测分析——上证指数开盘指数预测.第17章基于SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测第18章基于SVM的图像分割-真彩色图像分割第19章基于SVM的手写字体识别第20章LIBSVM-FarutoUltimate工具箱及GUI版本介绍与使用第21章自组织竞争网络在模式分类中的应用—患者癌症发病预测第22章SOM神经网络的数据分类--柴油机故障诊断第23章Elman神经网络的数据预测----电力负荷预测模型研究第24章概率神经网络的分类预测--基于PNN的变压器故障诊断第25章基于MIV的神经网络变量筛选----基于BP神经网络的变量筛选第26章LVQ神经网络的分类——乳腺肿瘤诊断第27章LVQ神经网络的预测——人脸朝向识别第28章决策树分类器的应用研究——乳腺癌诊断第29章极限学习机在回归拟合及分类问题中的应用研究——对比实验第30章基于随机森林思想的组合分类器设计——乳腺癌诊断第31章思维进化算法优化BP神经网络——非线性函数拟合第32章小波神经网络的时间序列预测——短时交通流量预测第33章模糊神经网络的预测算法——嘉陵江水质评价第34章广义神经网络的聚类算法——网络入侵聚类第35章粒子群优化算法的寻优算法——非线性函数极值寻优第36章遗传算法优化计算——建模自变量降维第37章基于灰色神经网络的预测算法研究——订单需求预测第38章基于Kohonen网络的聚类算法——网络入侵聚类第39章神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类第40章动态神经网络时间序列预测研究——基于MATLAB的NARX实现第41章定制神经网络的实现——神经网络的个性化建模与仿真第42章并行运算与神经网络——基于CPU/GPU的并行神经网络运算第43章神经网络高效编程技巧——基于MATLABR2012b新版本特性的探讨
2023/12/27 22:29:51 11.87MB MATLAB 神经网络 案例分析
1
python不使用框架实现卷积神经网络识别手写数字,在100个的测试集上准确率最高可达95%。
内含数据集
1
matlabbp神经网络以及GABP神经网络,包括数据.mat,包括详细注释,便于更改
2023/12/24 14:09:40 123KB bp;数据 GA-BP
1
PSO-GA-RBF神经网络。

2023/12/24 7:29:17 6KB 遗传算法
1
1、输入层的每个节点,都要与的隐藏层每个节点做点对点的计算,计算的方法是加权求和+激活2、利用隐藏层计算出的每个值,再用相同的方法,和输出层进行计算。
3、隐藏层用都是用Sigmoid作激活函数,而输出层用的是Purelin。
这是因为Purelin可以保持之前任意范围的数值缩放,便于和样本值作比较,而Sigmoid的数值范围只能在0~1之间。
4、起初输入层的数值通过网络计算分别传播到隐藏层,再以相同的方式传播到输出层,最终的输出值和样本值作比较,计算出误差,这个过程叫前向传播(ForwardPropagation)。
误差信号反向传递过程
2023/12/23 21:56:22 1002KB 05
1
训练一个卷积神经网络,用**fastai**库(建在**PyTorch**上)将图像分类为纸板,玻璃,金属,纸张,塑料或垃圾。
这是由GaryThung和MindyYang手动收集的图像数据集
2023/12/23 14:02:08 40.64MB 垃圾分类
1
深度学习的概念源于人工神经网络的研究。
含多隐层的多层感知器就是一种深度学习结构。
深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。
以上是部分深度学习引文论文合集
2023/12/23 9:20:41 138.24MB 深度学习
1
《独立成分分析》分为四个部分,共24章。
第一部分(第2章至第6章)介绍了《独立成分分析》所用到的主要数学知识,第二部分(第7章至第14章)是《独立成分分析》的重点,详细讲述了基本ICA模型及其求解过程,第三部分(第15章至第20章)讨论了基本ICA模型的多种扩展形式,第四部分(第21章至第24章)对ICA方法在不同领域的应用做了生动的阐述。
独立成分分析(ICA)已经成为近年来神经网络、高级统计学和信号处理等研究领域中最令人振奋的主题之一。
ICA源自对客观物理世界的抽象,它能够有效地解决许多实际问题,具有强大的生命力和广阔的工程应用前景。
《独立成分分析》(英文原版)是国际上第一本对ICA这门新技术进行全面介绍的综合性专著,其中还包括了为理解和使用该技术的相应数学基础背景材料。
《独立成分分析》不仅介绍了ICA的基本知识与总体概况、给出了重要的求解过程及算法,而且还涵盖了图像处理、无线通信、音频信号处理以及更多其他应用。
2023/12/22 11:25:23 1.34MB 独立成分分析
1
对lstm长短时记忆神经网络的简单介绍,包括循环神经网络的基础知识,lstm的简介和用lstm预测正弦图像的实验。
2023/12/21 14:30:28 1.78MB lstm
1
薛定宇老师编写的源代码程序,网上很难找到,供广大学习神经网络的同学学习
2023/12/21 1:08:13 2KB RBF PID
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡