三维集成和片上网络(NoC)的融合为片上互连的可伸缩性问题提供了有效的解决方案。
在3D集成中,硅穿Kong(TSV)被认为是最有前途的键合技术。
但是,TSV也是宝贵的链路资源,因为它们会占用大量芯片面积,并有可能在物理设计阶段导致路由拥塞。
此外,TSV遭受严重的良率损失,从而降低了有效的TSV密度。
因此,有必要在具有成本效益的设计中实现TSV经济的3DNoC架构。
对于对称的3DMeshNoC,我们观察到TSV的带宽利用率低,并且它们很少成为平面链路中网络的争用点。
基于此观察,我们提出了TSV共享(TS)方案,以使相邻路由器能够以时分复用的方式共享垂直信道,从而将TSV保存在3DNoC中。
我们还研究了不同的TS实现方案,并展示了TS如何通过设计空间探索提高多核处理器中的TSV有效性。
在实验中,我们全面评估了TS对系统所有层的影响。
结果表明,所提方法显着提高了TSV的有效性,而性能开销却可以忽略不计。
2023/8/4 13:38:37 3.39MB NoC; 3D Integration; TSV
1
AdapterProperties:查看适配器的属性等相关信息ScanDevices:重新扫描物理,逻辑设备VirtualDisks:配置虚拟磁盘,选择此选项可以配置,修改,删除虚拟磁盘PhysicalDrives:配置物理磁盘,选择此选项可以查看物理盘状态,配置热备份ConfiguraitonWizard:配置向导,选择此选项可以新建,清除,添加配置信息AdapterSelection:选择适配器PhysicalView:切换物理/逻辑视图Events:查看适配器的事件日志Exit:退出WebBIOS配置工具
2023/8/1 15:27:51 23.01MB IBM  3850
1
SPH光滑粒子流体动力学中英文都有,中文版本以及英文版的都有,拿去参考吧。
光滑粒子流体动力学-一种无网格粒子法第1章绪论1.1数值模拟1.1.1数值模拟的作用1.1.2一般数值模拟的求解过程1.2基于网格的方法1.2.1拉格朗日网格1.2.2欧拉网格1.2.3拉格朗日网格和欧拉网格的结合1.2.4基于网格的数值方法的局限性1.3无网格法1.4无网格粒子法(MPMS)1.5MPMs的求解策略1.5.1粒子描述法1.5.2粒子近似1.5.3MPMS的求解过程1.6光滑粒子流体动力学(SPH)1.6.1SPH方法1.6.2SPH方法简史1.6.3本书中的SPH方法第2章SPH的概念和基本方程2.1SPH的基本思想2.2SPH的基本方程2.2.1函数的积分表示法2.2.2函数的导数积分表示法2.2.3粒子近似法2.2.4推导SPH公式的一些技巧2.3其他基本概念2.3.1支持域和影响域2.3.2物理影响域2.3.3particle—in-cell(PIC)方法2.4结论第3章光滑函数的构造3.1引言3.2构造光滑函数的条件3.2.1场函数的近似3.2.2场函数导数的近似3.2.3核近似的连续性3.2.4粒子近似的连续性3.3构造光滑函数3.3.1构造多项式光滑函数3.3.2一些相关的问题3.3.3光滑函数构造举例3.4数值测试3.5结论第4章SPH方法在广义流体动力学问题中的应用4.1引言4.2拉格朗日型的Navier—Stokes方程4.2.1有限控制体与无穷小流体单元4.2.2连续性方程4.2.3动量方程4.2.4能量方程4.2.5Navier-Stokes方程4.3用SPH公式解Navier-Stokes方程组4.3.1密度的粒子近似法4.3.2动量方程的粒子近似法4.3.3能量方程的粒子近似法4.4流体动力学的SPH数值相关计算4.4.1人工粘度4.4.2人工热量4.4.3物理粘度4.4.4可变光滑长度4.4.5粒子间相互作用的对称化4.4.6零能模式4.4.7人工压缩率4.4.8边界处理4.4.9时间积分4.5粒子的相互作用4.5.1最近相邻粒子搜索法(NNPS)4.5.2粒子对的相互作用4.6数值算例4.6.1在不可压缩流的应用4.6.2在自由表面流的应用4.6.3SPH对可压缩流的应用4.7结论第5章非连续的SPH(DSPH)5.1引言5.2修正光滑粒子法5.2.1一维情况5.2.2多维情况5.3模拟非连续现象的DSPH公式5.3.1DSPH公式5.3.2非连续的确定5.4数值性能研究5.5冲击波的模拟5.6结论第6章SPH在爆炸模拟中的应用6.1引言6.2HE爆炸和控制方程6.2.1爆炸过程6.2.2HE的稳态爆轰6.2.3控制方程6.3SPH公式6.4光滑长度6.4.1粒子的初始分布6.4.2光滑长度的更新6.4.3优化和松弛过程6.5数值算例6.6应用SPH方法模拟锥孔炸药6.7结论第7章SPH在水下爆炸冲击模拟中的应用7.1引言7.2水下爆炸和控制方程7.2.1水下爆炸冲击的物理特性7.2.2控制方程7.3SPH公式7.4交界面处理7.5数值算例7.6真实爆炸模型与人工爆炸模型的比较研究7.7水介质缓冲模拟7.7.1背景7.7.2模拟设置7.7.3模拟结果7.7.4小结7.8结论第8章SPH方法在具有材料强度的动力学中的应用8.1引言8.2具有材料强度的动力学8.2.1控制方程8.2.2本构模型8.2.3状态方程8.2.4温度8.2.5声速8.3具有材料强度的动力学SPH公式8.4张力不稳定问题8.5自适应光滑粒子流体动力学(ASPH)8.5.1为什么需要ASPH方法8.5.2ASPH的主要思想8.6对具有材料强度的动力学的应用8.7结论第9章与分子动力学耦合的多尺度模拟9.1引言9.2分子动力学9.2.1分子动力学的基本原理9.2.2经典分子动力学9.2.3经典MD模拟9.2.4Poiseuille流的MD模拟9.3MD与FEM和FDM的耦合9.4MD与SPH的耦合9.4.1模型I:双重功能(具有重叠区域的模型)9.4.2模型Ⅱ:力桥(没有重叠区域的模型)9.4.3
2023/8/1 13:02:38 41.09MB SHP,粒子
1
EDEM是世界上第一个使用最先进的离散元技术进行颗粒系统仿真和分析的通用CAE软件。
它可以快速、简便地建立颗粒系统的参数化模型,添加颗粒的力学性质、物料性质和其他物理性质。
EDEM能够管理每个颗粒的信息(如质量、温度和速度等)以及作用在其上的力,同时EDEM还提供了非常强大的后处理功能。
2023/8/1 10:26:29 3.21MB 颗粒离散元 EDEM 培训资料
1
这是我们大学物理上课的ppt,提供大家学习!!!
2023/7/31 19:33:25 18.57MB 大学物理第五版学习课件ppt
1
内容简介本书通过介绍如何从麦克斯韦方程利用一系列简化假设直接得到集总电路抽象,在电气工程和物理间建立了清晰的联系。
本书中始终使用抽象的概念,以统一在模拟和数字设计中所进行的工程简化。
本书更为强调数字领域。
但我们对数字系统的处理却强调其模拟方面。
从开关、电源、电阻器和MOSFET开始,介绍KCL、KVL应用等内容。
本书表明,数字特性和模拟特性可通过关注元件特性的不同区域而获得。
作者简介AnantAgarwal是麻省理工学院(MIT)电气工程与计算机科学系(EECS)教授,1988年成为教师。
讲授的课程包括电路与电子学,VLSI,数字逻辑与计算机结构。
1999—2003年任计算机科学实验室(LCS)副主任。
Agarwal教授获斯坦福大学电气工程博士和硕士学位,印度IITMadras大学电气工程学士学位。
Agarwal教授领导的研究小组于1992年开发了Sparcle多线程微处理器,于1994年开发了MITAlewife可扩展共享存储器微处理器。
他同时还领导着MIT的VirtualWires项目,并为VirtualMachineWorks公司的创始人。
该公司于1993年将VirtualWires的逻辑仿真技术应用于市场。
目前Agarwal教授在MIT领导Raw项目。
该项目旨在开发新型可重配置的计算芯片。
他带领其团队开发了世界上最大的麦克风阵列LOUD,可以在噪音中定位、跟踪并放大语音,因此于2004年被授予吉尼斯世界记录。
他还与他人共同创建了Engim公司。
该公司开发多通道无线混合信号芯片集。
Agarwal教授还于2001年获得MauriceWilkes计算机结构奖,于1991年获得PresidentialYoungInvestigator奖。
JeffreyH.Lang是麻省理工学院(MIT)电气工程与计算机科学系(EECS)教授,1980年成为教师。
他分别于1975年、1977年和1980年在MIT的EECS获得学士、硕士和博士学位。
他在1991年至2003年期间任MIT电磁与电子系统实验室(LEES)副主任,在1991年至1994年任SensorsandActuators杂志副主编。
Lang教授的研究与教学兴趣在于分析、设计与控制机电系统,尤其关注电机、微传感器和驱动器以及柔性结构等方面。
他在MIT讲授电路与电子学课程。
他撰写过超过170篇论文并在机电、电力电子和应用控制等方面拥有10项专利。
他还获得过4次IEEE协会的最佳论文奖。
Lang教授是IEEE的Fellow,同时是原Hertz基会会的Fellow。
2023/7/31 9:11:57 8.1MB 电子电路
1
在本文中我们展示在人类视觉中一种有效的色彩外观模型,其中也包含原则性的参数选择作为一种先天的空间联合机制,可以被推广以获得优于最新技术的显着性模型楷模。
尺度积分是通过逆小波变换实现的通过一系列比例加权中心环绕响应。
比例加权函数(称为ECSF)已被优化以更好地复制心理物理数据颜色的外观,和适当的尺寸中心环绕抑制窗口已被确定通过对眼睛固定数据训练高斯混合模型,从而避免了特别的参数选择。
论文:SaliencyEstimationUsingaNon-ParametricLow-LevelVisionModel
2023/7/29 13:55:02 105KB 显著性检测 SIM算法 Matlab
1
FEAToolMultiphysics-让物理建模与仿真更简单容易FEATool是一种集成的多物理现象建模与工程仿真工具,内置CAD、几何工具、预处理、栅格产生、求解器以及后处理和可视化显示。
已经集成的几种预定义物理模型是可用的,它们很容易结合起来建立不同的多物理模拟问题,包括流体流动、传热、结构应力、电磁学、反作用力、质量和化学物质的输送。
而且,用户也可以自己创建需要的方程和物理模式。
2023/7/29 13:31:41 148.82MB Matlab FEATools
1
物理渲染物理渲染物理渲染物理渲染物理渲染物理渲染
2023/7/27 8:12:27 8.86MB PBR 物理渲染
1
基于四元数的姿态解算方法能够有效结合陀螺以及加速度计的误差特性,将运动场以及重力加速度两个互不相干的物理矢量进行互补融合。
主要利用陀螺仪测量的角速度作为四元数的更新,以重力加速度作为四元数的观测,通过8位微处理器实时解算姿态角。
基于四元数的解算方法,利用叉乘有效地把三轴陀螺以及三轴加速度计的数据进行融合,使得测量的俯仰角、横滚角逼近真角度,经过试验验证了该算法的有效性,且计算量少,在姿态控制领域有这良好的应用前景。
2023/7/25 13:21:09 744KB 四元数 陀螺仪 姿态角
1
共 967 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡