高光谱遥感影像分类数据集,可用于高光谱遥感影像分类研究,尤其在深度学习中十分常用,包括Botswana、IndianPines、PaviaUniversity等。
2024/2/21 15:58:24 349.65MB 深度学习 高光谱遥感影像分类 数据集
1
火焰数据集图片以及xml文件,两者相互匹配,可以通过深度学习keras-yolo3框架直接训练成火焰模型。
2024/2/20 0:33:26 3.75MB 人工智能
1
著名的Netflix智能推荐百万美金大奖赛使用是数据集.因为竞赛关闭,Netflix官网上已无法下载.Netflixprovidedatrainingdatasetof100,480,507ratingsthat480,189usersgaveto17,770movies.Eachtrainingratingisaquadrupletoftheform.TheuserandmoviefieldsareintegerIDs,whilegradesarefrom1to5(integral)stars.[3]Thequalifyingdatasetcontainsover2,817,131tripletsoftheform,withgradesknownonlytothejury.Aparticipatingteam'salgorithmmustpredictgradesontheentirequalifyingset,buttheyareonlyinformedofthescoreforhalfofthedata,thequizsetof1,408,342ratings.Theotherhalfisthetestsetof1,408,789,andperformanceonthisisusedbythejurytodeterminepotentialprizewinners.Onlythejudgesknowwhichratingsareinthequizset,andwhichareinthetestset—thisarrangementisintendedtomakeitdifficulttohillclimbonthetestset.Submittedpredictionsarescoredagainstthetruegradesintermsofrootmeansquarederror(RMSE),andthegoalistoreducethiserrorasmuchaspossible.Notethatwhiletheactualgradesareintegersintherange1to5,submittedpredictionsneednotbe.Netflixalsoidentifiedaprobesubsetof1,408,395ratingswithinthetrainingdataset.Theprobe,quiz,andtestdatasetswerechosentohavesimilarstatisticalproperties.Insummary,thedatausedintheNetflixPrizelooksasfollows:Trainingset(99,072,112ratingsnotincludingtheprobeset,100,480,507includingtheprobeset)Probeset(1,408,395ratings)Qualifyingset(2,817,131ratings)consistingof:Testset(1,408,789ratings),usedtodeterminewinnersQuizset(1,408,342ratings),usedtocalculateleaderboardscoresForeachmovie,titleandyearofreleaseareprovidedinaseparatedataset.Noinformationatallisprovidedaboutusers.Inordertoprotecttheprivacyofcustomers,"someoftheratingdataforsomecustomersinthetrainingandqualifyin
2024/2/19 18:29:23 27KB dataset Netflix
1
完整YOLOv3TensorFlow实现,支持您自己的数据集培训
2024/2/19 16:13:11 2.44MB Python开发-机器学习
1
规划权限类型页面我们建议在安装python,和其他依赖项之前在工作:$makemakerules$makeinit$make每夜这些页面由。
执照该项目中的软件是开源的,并包含在文件中。
复制到该存储库中的各个数据集可能具有特定的版权和许可,否则,该存储库中的所有内容和数据均为并根据许可的条款提供。
2024/2/19 3:02:16 35KB Makefile
1
[keras]如何解决MNIST数据集下载不了的问题-附件资源
2024/2/18 3:38:37 23B
1
基于高斯分布的改进版YOLOv3权重文件,基于BDD数据集训练而成。
摘要必须大于50个字!我也是醉了!!!
2024/2/16 22:14:52 235.16MB YOLOv3 目标检测 高斯分布 正太分布
1
推荐算法研究人员必备数据集
2024/2/15 20:34:58 21.54MB 推荐 豆瓣图书 评分数据集
1
matlabPCA的m文件。
数据集Iris是常用的分类实验数据集,由Fisher,1936收集整理。
CSDN上原来有一个arff格式的鸢尾花数据集,不方便matlab直接调用。
我的这个数据集是txt格式的,在matlab下可以直接一句命令“load('iris.txt')”加载。
iris以鸢尾花的特征作为数据来源,常用在分类操作中。
该数据集由3种不同类型的鸢尾花的50个样本数据构成。
其中的一个种类与另外两个种类是线性可分离的,后两个种类是非线性可分离的。
该数据集包含了5个属性:&Sepal.Length(花萼长度),单位是cm;&Sepal.Width(花萼宽度),单位是cm;&Petal.Length(花瓣长度),单位是cm;&Petal.Width(花瓣宽度),单位是cm;&种类:IrisSetosa(山鸢尾)、IrisVersicolour(杂色鸢尾),以及IrisVirginica(维吉尼亚鸢尾
2024/2/15 18:13:37 2KB MATLAB PCA iris
1
RBM-on-Classification,用RBM所做的分类,里面包含源码和数据集,独立于任何工具箱,整个就是一个工程,里面有仿真和图像,还有各种有用的数据函数
2024/2/15 14:08:08 1.35MB RBM分类
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡