本系统采用企业级开发标准,使用SpringBoot架构,数据访问层采用SpringDataJpa,业务控制层采用SpringMvc,安全框架采用Shiro,实现了完整权限系统,Controller方法采用shiro注解,来实现有效的权限控制;
界面采用了Easyui技术;
本视频教程详细讲解了次系统的完整开发,亮点是SpringBoot的综合应用,以及权限系统的设计,以及基于Shiro的安全控制,以及Easyui的高级应用工具:eclipse+mysql+JDK+tomcat技术:SpringBoot+SpringDataJpa++SpringMvc+Shiro安全认证+完整权限系统+easyui
2025/3/25 19:22:19 1.56MB jav
1
模拟路灯控制LCD显示时间设定根据环境开关灯最小系统LM3S811
1
运动目标检测在计算机视觉,图像处理,模式识别等多领域有着广泛的应用,经历了多年的研究和探索,针对运动目标检测的算法层出不穷,我们也积累了许多相关的算法。
但是我们还远没有完成对这个充满挑战的领域的探索。
本文对运动目标检测的技术进行了一定的研究,实现了基于canny算子和光流法相结合的运动目标检测方法。
为了能够准确把握这个行业的动态,本文首先介绍了运动目标检测的三大经典方法:背景相减法,帧差法,光流法。
同时比较了各自的优缺点。
帧差法具有易实现,计算量小的优点,但是却无法准确的检测出运动目标的完整轮廓。
光流法具有对不断运动的运动目标进行目标检测,但是它却有很大的计算量,同时对噪声也比较敏感。
为了可以对运动目标进行更好的识别,我们提出了边缘检测算子与光流法相结合的新方法。
在对多种边缘检测算子进行了了解之后,我们确定了利用canny算子进行边缘检测,并且结合光流法进行运动目标检测的方法。
在用canny算子检测出运动物体边缘之后,借助光流法计算出物体的运动场,同时结合最大类间方差法分辨出运动目标和背景,接着将物体的边缘信息和物体的运动信息进行融合,最后运用数学形态学的方法对结果进行处理,得到最终的运动目标。
通过实验,我们发现该方法既克服了帧差法不能准确检测出运动物体轮廓,和光流法抗噪声能力差的缺点,可以准确检测运动目标,对运动目标具有更好的检测效果
2025/3/25 14:37:01 15.94MB 运动目标检测 CANNY算子 光流 matlab
1
你的磁盘是不是保存了很多重复的文件?分散在各个目录,不好找吧?找到了,为了保证目录的完整性,你又不能删除它?你知道Linux的文件硬链接吗?就是给文件一个别名,多个文件名指向同一个文件内容,不重复占用空间。
与快捷方式不同的是,删除快捷方式的原始文件,快捷方式就会失效。
你删除硬链接其中任何一个,都不影响原始文件,直到全部文件都删除了(链接数为0)文件才会从磁盘删除。
其实Window的NTFS文件系统也支持文件硬链接的(CreateHardLink),现在就提供一个工具,以相似的文件名为基础,查找重复的文件,我们忽略(1)这样的重复模式文本(正则表达式为:@"(\s)|复件|\((\d)+\)"),把重复的文件改为硬链接。
从而节省磁盘空间。
说明在我的BLOG中http://blog.csdn.net/greenery/archive/2009/10/22/4714144.aspx
1
Unity——VideoPlayer完整运行实例,包括Url播放和本地视频播放,及大部分VideoPlayer的API接口实现。
2025/3/25 9:34:32 12.43MB Unity
1
办公用品管理系统设计方案一个完整的开发资料,需求分析,概要设计,原代码,代码测试方案以及测试报告都有!
2025/3/25 7:18:29 588KB VB
1
NSGA-II非支配排序遗传算法的matlab实例,完整程序可直接运行
2025/3/24 18:36:11 378KB NSGA_II NSGA 遗传算法 NSGA-2
1
相信很多站长对webzip这款软件都并不感到陌生,它功能强大,能够完整下载网站的内容,或者你也可以选择自行设置下载的层数、文件类型、网页与媒体文件的定位等等。
2025/3/24 17:03:27 1.43MB 免安装版 下载工具
1
HeadFirstHTML5Programming(中文版),完整扫描版.pdf、
2025/3/24 14:05:08 65.22MB head first
1
精美PPT
2025/3/24 6:47:19 5.95MB PPT
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡