功能点估算,IFPUG,原理和实例,精心制作PPT,逻辑清晰
2024/3/22 13:46:11 2.18MB IFPUG
1
在这次演讲中,我将介绍我们在学习知识图推理逻辑规则方面的最新进展。
逻辑规则在用于预测和推广到其他任务时提供了可解释,因此是学习的关键。
现有的方法要么面临在大搜索空间中搜索的问题(如神经逻辑编程),要么由于稀疏奖励而无效优化(如基于强化学习的技术)。
为了解决这些局限性,本文提出了一个称为RNNLogic的概率模型。
2024/3/22 5:45:08 2.24MB 知识图谱推理 逻辑规则
1
针对传统方式开发的餐饮WebApp平台难以维护和扩展、用户体验不够好等问题,本文提出一种以Windows为开发环境,Eclipse为开发工具,Oracle为数据库,将SSH和jQuery这两种框架整合应用于系统开发的方案。
该方案包括视图层、业务逻辑层和数据持久层,分别由SSH+jQuery框架组合实现相应功能。
结果表明,该方案将SSH和jQuery这2个框架整合应用于系统开发中,实现了注册登录、订餐、外卖等主要功能,实现了上述三个层面的完全分离,提高了用户体验度。
2024/3/18 17:20:21 973KB Struts; Spring; Hibermate; jQuery;
1
在本节中我们通过生成一个简单的图片作为ASP.NET图形处理的入门训练。
首先使用VisualStudio.NET2003新建一个Web应用程序,命名为GDITec,新建一个Web窗体命名为GDI_Sample1.aspx,我们为该窗体编写逻辑代码:   ‘—–codebegin—–   ImportsSystem.Drawing   ImportsSystem.Drawing.Bitmap   ImportsSystem.Drawing.Graphics   PublicClassWebForm1   InheritsSystem.Web.UI.P
80KB AS asp system
1
COVID个人风险计算器根据您的年龄,性别,种族,症状,健康状况,行为等,计算个人患COVID的风险...风险=((活动案例中社区的比例)(症状概率)(敏感性))/(归一化因子)请注意,可以从NYTimesCOVID-19github上检索“us-counties.csv”文件。
链接到这里对症状风险的计算是通过对没有COVID和具有COVID的患者的症状报告进行逻辑回归。
ALAMA发表的论文将健康风险纳入了我们的计算器。
链接到这里根据年龄如何影响您的死亡,进入重症监护病房和住院的机会的不同研究,使用指数分布将COVID年龄转换为死亡,重症监护病房和住院的可能性。
社区风险是使用从NYTimesCOVID-19github检索的us-counties.csv文件计算的。
文件每周更新一次。
贡献者团队马凯文-团队负责人/数据科学家TimothyGa
2024/3/15 10:15:29 17.53MB Python
1
一个开源的高性能IOCP(完成端口)网络通信封装框架《HP-Socket》的使用实例,官方的DEMO只有MFC对话框的版本,对于刚接触这个框架的新手不太容易把代码移植到自己的项目。
此DEMO使用标准C++控制台来实现,对于刚接触网络编程的新手来说可以更容易跟踪理解HP-Socket组件的工作流程,从而快速移植到自己的项目中。
此DEMO采用PACK模型,包含服务器及客户端的实现。
PACK模型可以让你不用考虑数据的分包组包,也不用担心粘包及解包,数据收发的一切工作都由HPSocket框架组件来完成,让你可以专注于自己的业务逻辑。
此DEMO采用VS2019编译,如果你版本低于2019,请修改项目属性->常规里两个地方就可以正常编译:1.修改一下“WindowsSDK版本”为你已安装的WINDOWSSDK版本。
2.修改“平台工具集”为你当前正在使用的VS的版本HPSocket官网:https://www.oschina.net/p/hp-socket
2024/3/14 6:44:39 176.92MB HPSocket IOCP Socket封装类 C/C++网络编程
1
《逻辑导论》试卷3套
2024/3/11 21:48:06 488KB 逻辑推理
1
猜数字  猜数字  猜数字可以算是一种益智类小游戏,一般两个人玩,也可以由一个人和电脑玩,可以在纸上、在网上都可以玩。
这种游戏规则简单,但可以考验人的严谨和耐心。
  目录  1规则  1.1次数限制  1.2含重复数字的猜数字  2解法  2.1计算机解  2.2推理解  2.3代入解  2.4其他  3参看  规则  这个游戏的规则比较简单,一般两个人玩,一方出数字,一方猜。
出数字的人要想好一个没有重复数字的4位数,不能让猜得人知道。
猜的人就可以开始猜。
每猜一个数字,出数者就要根据这个数字给出几A几B,其中A前面的数字表示位置正确的数的个数,而B前的数字表示数字正确而位置不对的数的个数。
  如正确答案为5234,而猜的人猜5346,则是1A2B,其中有一个5的位置对了,记为1A,而3和4这两个数字对了,而位置没对,因此记为2B,合起来就是1A2B。
  接着猜的人再根据出题者的几A几B继续猜,直到猜中为止。
  次数限制  有的时候,这个游戏有猜测次数上的限制。
根据计算机测算,这个游戏,如果以最严谨的计算,任何数字可以在7次之内猜出。
而有些地方把次数限制为6次或更少,则会导致有些数可能猜不出来。
而有些地方考虑到人的逻辑思维难以达到计算机的那么严谨,故设置为8次甚至10次。
也有的没有次数上的限制。
  含重复数字的猜数字  有一种使用范围比较狭窄的猜数字,是允许重复数字存在的猜数字,但由于其规则较复杂,故没有得到广泛的推广。
其规则如下:  除了上面的规则外,如果有出现重复的数字,则重复的数字每个也只能算一次,且以最优的结果为准,  如正确答案为5543,猜的人猜5255,则在这里不能认为猜测的第一个5对正确答案第二个,根据最优结果为准的原理和每个数字只能有一次的规则,两个比较后应该为1A1B,第一个5位子正确,记为1A;
猜测数字中的第三个5或第四个5和答案的第二个5匹配,只能记为1B。
当然,如果有猜5267中的第一个5不能与答案中的第二个5匹配,因此只能记作1A0B。
  解法  对于不同的人,常常会用到不同的解法  计算机解  通常采用的计算机解是通过排除法,即遍历所有可能的数,将不符合要求的数剃掉。
  下面是一个计算机处理的例子:  for(inti=0;i<Array.Count;i++){if(Array与当前输出数字的比较!=用户输入的与正确答案对比的结果){Array.Remove(i);i--;}}    这个代码采用C#的语法,其中Array表示所有可能的数字的集合。
这个例子为了方便说明,结合了语言的描述。
  这样的方法充分利用了计算机计算速度快的优势,迅速排出不符合要求的数。
通常第一次猜测的时间(有的引擎为第二次猜测)会在10秒左右,而随着猜测次数的不断增加,猜测的时间会越来越短,最后几乎不需要时间,这是由于集合中的数越来越少,排除需要的时间也随之减少。
  推理解  计算机解释根据这种方法推广的。
这种解法的中心思想是假设猜的这个数字是正确答案,即如果它为正确答案,那么这个数应该符合已经猜测的数及其结果。
如已经有  12340A0B  那么下一步就不能猜含有1234中任一数字的数,因为如果正确答案含1234中任一,结果就不可能为0A0B。
  这种解法对猜者要求较高,通常,可能会被定式思维所干扰,导致难以猜出。
  基于这个解法,根据个人思维风格和起始数字选择的不同,以及对出题者出数风格的猜测,有时可以把猜测次数控制在5步内,但不总能在5步内猜出。
  使用这种解法需要考虑的时间很久,和计算机解正好相反,人使用这种方法,通常随着猜测次数的增加,需要考虑的东西不断增多,反而考虑的时间会变得越来越长。
  代入解  还有一种方法,在人的猜测中很常用,即将推理出不可能含有的数字,代入,察看那些数字是有的。
  但这种方法其猜测次数难以确定,且通常的猜测次数比推理解多。
  其他  可能还有其他的方法。
2024/3/11 20:56:10 20KB 猜数字游戏 C# GuessNumber
1
RLC层位于PDCP层和MAC层之间。
它通过SAP(ServiceAccessPoint)与PDCP层进行通信,并通过逻辑信道与MAC层进行通信。
每个UE的每个逻辑信道都有一个RLC实体(RLCentity)。
RLC实体从PDCP层接收到的数据,或发往PDCP层的数据被称作RLCSDU(或PDCPPDU)。
RLC实体从MAC层接收到的数据,或发往MAC层的数据被称作RLCPDU(或MACSDU)
2024/3/10 21:53:25 991KB LTE RLC
1
北京大学数字逻辑设计实验课程讲义(2018年)目录:实验一:门电路延迟特性测量与仪器的使用实验二:全加器及组合逻辑电路的设计方法实验三:二位数值比较器实验四:译码器及其应用实验五:数据选择器及其应用实验六:读写存贮器实验七:触发器与移位寄存器实验八:计数器实验九:并行加减集成逻辑电路管脚图关于自主设计
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡