现在我们回到LDA的原理上,我们在第一节说讲到了LDA希望投影后希望同一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大,但是这只是一个感官的度量。
现在我们首先从比较简单的二类LDA入手,严谨的分析LDA的原理。
    假设我们的数据集D={(x1,y1),(x2,y2),...,((xm,ym))}D={(x1,y1),(x2,y2),...,((xm,ym))},其中任意样本xixi为n维向量,yi∈{0,1}yi∈{0,1}。
我们定义Nj(j=0,1)Nj(j=0,1)为第j类样本的个数,Xj(j=0,1)Xj(j=0,1)为第j类样本的集合,而μj(j=0,1)μj(j=0,1)为第j类样本的均值向量,定义Σj(j=0,1)Σj(j=0,1)为第j类样本的协方差矩阵(严格说是缺少分母部分的协方差矩阵)。
    μjμj的表达式为:μj=1Nj∑x∈Xjx(j=0,1)μj=1Nj∑x∈Xjx(j=0,1)    ΣjΣj的表达式为:Σj=∑x∈Xj(x−μj)(x−μj)T(j=0,1)Σj=∑x∈Xj(x−μj)(x−μj)T(j=0,1)    由于是两类数据,因此我们只需要将数据投影到一条直线上即可。
假设我们的投影直线是向量ww,则对任意一个样本本xixi,它在直线ww的投影为wTxiwTxi,对于我们的两个类别的中心点μ0,μ1μ0,μ1,在在直线ww的投影为wTμ0wTμ0和wTμ1wTμ1。
由于LDA需要让不同类别的数据的类别中心之间的距离尽可能的大,也就是我们要最大化||wTμ0−wTμ1||22||wTμ0−wTμ1||22,同时我们希望同一种类别数据的投影点尽可能的接近,也就是要同类样本投影点的协方差wTΣ0wwTΣ0w和wTΣ1wwTΣ1w尽可能的小,即最小化wTΣ0w+wTΣ1wwTΣ0w+wTΣ1w。
综上所述,我们的优化目标为:argmaxwJ(w)=||wTμ0−wTμ1||22wTΣ0w+wTΣ1w=wT(μ0−μ1)(μ0−μ1)TwwT(Σ0+Σ1)wargmax⏟wJ(w)=||wTμ0−wTμ1||22wTΣ0w+wTΣ1w=wT(μ0−μ1)(μ0−μ1)TwwT(Σ0+Σ1)w    我们一般定义类内散度矩阵SwSw为:Sw=Σ0+Σ1=∑x∈X0(x−μ0)(x−μ0)T+∑x∈X1(x−μ1)(x−μ1)TSw=Σ0+Σ1=∑x∈X0(x−μ0)(x−μ0)T+∑x∈X1(x−μ1)(x−μ1)T    同时定义类间散度矩阵SbSb为:Sb=(μ0−μ1)(μ0−μ1)TSb=(μ0−μ1)(μ0−μ1)T    这样我们的优化目标重写为:argmaxwJ(w)=wTSbwwTSwwargmax⏟wJ(w)=wTSbwwTSww    仔细一看上式,这不就是我们的广义瑞利商嘛!这就简单了,利用我们第二节讲到的广义瑞利商的性质,我们知道我们的J(w)J(w)最大值为矩阵S−12wSbS−12wSw−12SbSw−12的最大特征值,而对应的ww为S−12wSbS−12wSw−12SbSw−12的最大特征值对应的特征向量!而S−1wSbSw−1Sb的特征值和S−12wSbS−12wSw−12SbSw−12的特征值相同,S−1wSbSw−1Sb的特征向量w′w′和S−12wSbS−12wSw−12SbSw−12的特征向量ww满足w′=S−12www′=Sw−12w的关系!    注意到对于二类的时候,SbwSbw的方向恒为μ0−μ1μ0−μ1,不妨令Sbw=λ(μ0−μ1)Sbw=λ(μ0−μ1),将其带入:(S−1wSb)w=λw(Sw−1Sb)w=λw,可以得到w=S−1w(μ0−μ1)w=Sw−1(μ0−μ1),也就是说我们只要求出原始二类样本的均值和方差就可以确定最佳的投影方向ww了。
2024/7/30 21:57:26 3KB MATLAB 人脸识别 LDA knn
1
房屋销售管理系统房屋销售管理系统是为了提高管理效率而开发的。
它包括买家信息,卖家信息,房屋信息,并提供了查询、修改、添加、删除等功能。
随着计算机行业的飞速发展,人类已经进入信息时代,社会中的各个单位、部门也陆续开始使用软件化管理模式,使得在管理上实现了自动化、多元化的目标。
2024/7/30 2:29:52 38KB 房屋销售管理
1
特征检测与匹配的目标是识别一个图像中的关键点与另一个图像中的对应点之间的配对。
在此实验中,你将编写代码以检测图像中的特征点(对于平移、旋转和照明具有一定的不变性),并在另一个图像中找到最佳匹配特征。
为了帮你可视化结果并调试程序,我们提供了一个用户界面,可以显示检测到的特征和最佳匹配。
我们还提供了一个示例ORB特征检测器,用于结果比较。
该实验有三个部分:特征检测、特征描述和特征匹配。
您所需要实现的所有代码都在features.py中。
2024/7/30 0:22:45 21.64MB 西电 计算机视觉 实验
1
基于多特征融合的防遮挡目标跟踪算法
2024/7/28 18:58:22 627KB 研究论文
1
雷达目标的RCS计算方法,很好的一个程序,可以计算一些简单目标的反射面积
2024/7/28 15:06:27 2KB RCS
1
matlab开发-嵌入式编码器的QNXTargetSupportPackage。
此目标支持包允许您在QNXRTOS上部署算法。
2024/7/27 15:03:08 774KB 验证、确认和测试
1
第十八节、基于传统图像处理的目标检测与识别(HOG+SVM附代码)
2024/7/25 19:15:33 751KB SVM附代码 目标检测 图像处理
1
多目标跟踪JPDA~!!初学者可以学习的不错
2024/7/25 16:09:13 22KB 多目标跟踪 JPDA
1
ucguibuilder可在windows上绘制UI界面,生成代码后可直接添加进目标机工程中使用,达到所见即所得的效果,懒人UCGUI开发必备。
最新版本集成进了VC编译器,可不需编译环境直接运行
2024/7/25 0:19:40 9.38MB uCGUI
1
一、课程设计目的1.在实验机上设计实现机器指令及对应的微指令(微程序)并验证,从而进一步掌握微程序设计控制器的基本方法并了解指令系统与硬件结构的对应关系;
2.通过控制器的微程序设计,综合理解计算机组成原理课程的核心知识并进一步建立整机系统的概念;
3.培养综合实践及独立分析、解决问题的能力。
二、课程设计的任务针对COP2000实验仪,从详细了解该模型机的指令/微指令系统入手,以实现乘法和除法运算功能为应用目标,在COP2000的集成开发环境下,设计全新的指令系统并编写对应的微程序;
之后编写实现乘法和除法的程序进行设计的验证。
2024/7/24 5:52:16 364KB 组成原理 cop2000 乘除法
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡