在Adaboost算法的基础上,提出了一种改进的Boosting方法来解决分类问题。
此方法将示例的类标签预测为分类器集合的加权多数投票。
每个分类器是通过将给定的弱学习者应用于子样本(大小小于原始训练集的子样本)而获得的,该子样本是根据原始训练集上保持的概率分布从原始训练集中得出的。
在Adaboost中提出的重新加权方案中引入了一个参数,以更新分配给训练示例的概率,从而使算法比Adaboost愈加准确。
在UCI资料库中可获得的合成数据集和一些实际数据集上的实验结果表明,该方法提高了Adaboost的预测精度,执行速度以及对分类噪声的鲁棒性。
此外,通过kappa误差图研究了集成分类器的多样性准确性模式。
2016/5/11 17:46:49 688KB ensemble classifier; weak learner;
1
数据范围:全国325个地区(省份和地级市)数据年份:2001-2019年样本数量:325条数据来源:《铁路客货运输专刊》、地方统计指标说明:地区、年份、能否开通高铁
2022/9/18 11:09:35 37KB 交通
1
这是HaGRID手势识别数据集使用说明和下载,原文连接:https://panjinquan.blog.csdn.net/article/details/126725796,HaGRID数据集数量特别大,有716GB的大小,包含552,992个FullHD(1920×1080)RGB图像。
此外,如果帧中有第二只手,则某些图像具有no_gesture类。
这个额外的类包含123,589个样本。
数据分为92%的训练集和8%的测试集,其中509,323幅图像用于训练,43,669幅图像用于测试。
提供手势动作识别数据集,共18个手势类别,每个类别约含有7000张图片,总共123731张图片(12W+)提供所有图片的json标注格式文件,即原始HaGRID数据集的标注格式提供所有图片的XML标注格式文件,即转换为VOC数据集的格式提供所有手势区域的图片,每个标注框的手部区域都裁剪上去,并保存在Classification文件夹下可用于手势目标检测模型训练可用于手势分类识别模型训练
1
Yale人脸数据库:总样本数165张,15类,每类11张。
光照;
ExtendedYaleB:总样本数2414张,38类,本来是每类64张,但个体类缺了几张图像。
光照
2021/4/15 19:27:47 10.23MB Yale人脸数据库 Yale B人脸数据库
1
这是一个运行于vs2015的项目,代码也就200+行,实现的功能有基础的四则运算以及math里面cos,sin,pow函数的,有这几个函数为样本添加其他函数也很简单,代码实现简单,中缀转后缀,只用了一个栈,附加提示,若是使用函数,一定要加括号,如pow(1+2,sin(3+4))这样的可行。
2017/10/4 23:40:20 2.14MB c++ mid_to_suffi
1
本人对ExtendedYaleB做了数据样本每人25张图片,测试样本每人40张图片的分类,便于人脸辨认时候测试。
2017/11/15 21:36:41 53.18MB Extended Yale B 人脸库
1
利用RBF网络(隐含层神经单元个数和学习率等参数可在内部修改,不作为输入参数)学习和训练,并对输入的测试样本做出响应。
输入和输出维数可以多维。
实际运转,逼近y=sin(t)函数效果不错。
2021/3/5 12:33:36 2KB RBF;MATLAB
1
相关向量机的MATLAB代码,经过验证是正确的,很实用推荐相关向量机(Relevancevectormachine,简称RVM)是Tipping在2001年在贝叶斯框架的基础上提出的,它有着与支持向量机(Supportvectormachine,简称SVM)一样的函数方式,与SVM一样基于核函数映射将低维空间非线性问题转化为高维空间的线性问题。
RVM原理步骤RVM通过最大化后验概率(MAP)求解相关向量的权重。
对于给定的训练样本集{tn,xn},类似于SVM,RVM的模型输出定义为y(x;w)=∑Ni=1wiK(X,Xi)+w0其中wi为权重,K(X,Xi)为核函。
因此对于,tn=y(xn,w)+εn,假设噪声εn服从均值为0,方差为σ2的高斯分布,则p(tn|ω,σ2)=N(y(xi,ωi),σ2),设tn独立同分布,则整个训练样本的似然函数可以表示出来。
对w与σ2的求解如果直接使用最大似然法,结果通常使w中的元素大部分都不是0,从而导致过学习。
在RVM中我们想要避免这个现像,因此我们为w加上先决条件:它们的机率分布是落在0周围的正态分布:p(wi|αi)=N(wi|0,α?1i),于是对w的求解转化为对α的求解,当α趋于无穷大的时候,w趋于0.RVM的步骤可以归结为下面几步:1.选择适当的核函数,将特征向量映射到高维空间。
虽然理论上讲RVM可以使用任意的核函数,但是在很多应用问题中,大部分人还是选择了常用的几种核函数,RBF核函数,Laplace核函数,多项式核函数等。
尤其以高斯核函数应用最为广泛。
可能于高斯和核函数的非线性有关。
选择高斯核函数最重要的是带宽参数的选择,带宽过小,则导致过学习,带宽过大,又导致过平滑,都会引起分类或回归能力的下降2.初始化α,σ2。
在RVM中α,σ2是通过迭代求解的,所以需要初始化。
初始化对结果影响不大。
3.迭代求解最优的权重分布。
4.预测新数据。
2021/2/5 11:51:53 17KB 相关向量机 rvm
1
hog特征+svm分类器行人检测训练的负样本处理程序,千万留意路径问题
2017/8/2 19:58:27 11.02MB 负样本 hog svm 行人检测
1
CNN深度学习-字符识别;
可以进行单张样本的识别;
源代码是进行批量的测试,无法进行单张测试;
test_example_CNN_yhw.m可以直接运转
2020/8/13 20:40:30 123KB CNN深度学习
1
共 560 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡