TensorFlowVGG-16预训练模型,用于SSD-TensorFlow的Demo训练.
2024/4/15 20:21:16 489.54MB TensorFlow vgg_16.ckpt
1
使用fasterrcnn实现口罩检测,fasterrcnn基于keras搭建,训练需要口罩数据集,数据集必须是VOC格式,预测需要权重文件,权重文件已经存在
2024/4/15 9:46:39 112MB keras tensorflow 口罩检测 fasterrcnn
1
提供预训练模型,运行eval.py即可,如果没有GPU,则请删除.cuda()
2024/4/15 6:36:02 130.54MB 深度学习 边缘检测
1
文本分训练和测试集,每个类别2000条新闻,简单做分类,测试效果是足够了
2024/4/14 18:29:40 8.3MB 文本分类语料
1
为了提高雷达调制信号在电子对抗环境中的分选准确度,建立了基于偏联系数模糊聚类(PCFCM)算法和教与学随机森林(TLRF)算法的雷达调制信号分选(PCFCM-TLRF)模型。
该模型引入偏联系数(PCN)改进K均值聚类(K-means)算法,优化模糊C均值聚类(FCM)算法,用优化后的FCM算法对信号样本集进行预处理;
使用“教与学”优化(TLBO)算法优化随机森林(RF)算法,使优化后的RF算法能够以更低的复杂度构成更优的分类器;
将预处理后的样本作为TLRF中的训练样本实现信号分选。
研究结果表明,与其他分选模型相比,PCFCM-TLRF模型具有更高的分选准确度,能够有效地实现雷达调制信号的分选。
1
很好的人眼定位的方法,训练与测试过程清晰,内附全部代码及测试、训练图片库。
2024/4/13 18:56:47 3.97MB ASEF matlab
1
分割好的16*32黑底白字的车牌字符340个(A~Z,0~9共34类字符,每类10个)
1
BP算法是由学习过程由信号的正向传播与误差的反向传播两个过程组成。
由于多层前馈网络的训练经常采用误差反向传播算法,人们也常把将多层前馈网络直接称为BP网络。
2024/4/3 1:38:49 92KB matlab 神经网络
1
基于keras的人脸表情识别。
包含训练、图片识别、摄像头视频流识别的py文件,数据集和已经训练好的模型。
下载即可运行使用。
2024/4/2 10:01:07 57.96MB keras 深度学习 表情识别 计算机视觉
1
物理网本文的Tensorflow实施:我们提供实验数据以进行演示和快速演示。
引用文献:王菲,姚明cha,王海超,孟柳,吉安卡洛·佩德里尼,沃尔夫冈·奥斯坦,乔治·巴巴斯塔斯蒂和国海司徒。
使用未经训练的神经网络进行相位成像。
轻科学学报9,77(2020)。
需求python3.6张量流1.9.0matplotlib3.1.3numpy的1.18.1枕头7.1.2摘要迄今为止,为光学计算成像(CI)提出的大多数神经网络都采用监督训练策略,因此需要大量训练来优化其权重和偏差。
在许多实际应用中,在许多小时的数据采集中,除了环境和系统稳定性的要求外,不可能获得足够数量的地面真实图像进行训练。
在这里,我们建议通过将代表图像形成过程的完整物理模型合并到常规的深度神经网络中来克服此限制。
最终的增强型物理深度神经网络(PhysenNet)的最大优势在于,无需事先培
2024/3/31 3:15:13 1.04MB Python
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡