先电云计算IAAS平台手工搭建笔记经本人实战操作一点点跳坑修改的,上面有一些命令参数的注释以及各个组件的简介。
先电云计算IAAS平台手工搭建笔记经本人实战操作一点点跳坑修改的,上面有一些命令参数的注释以及各个组件的简介。
2024/12/17 19:33:56 6.34MB 先电云 openstack 技能大赛
1
昆仑通泰McgsPro软件是一款在工业自动化领域广泛应用的触摸屏组态软件,也被称为昆仑通态触摸屏。
以下是McgsPro软件的基本使用教程及一个样例工程的简单介绍。
一、McgsPro软件基本使用教程安装软件下载并安装McgsPro组态软件及其模拟器(如果没有触摸屏设备,则使用模拟器进行模拟运行)。
新建工程打开McgsPro软件,点击“文件”菜单下的“新建工程”选项,开始创建新的组态工程。
工程配置在新建工程界面,配置HMI设备的分辨率、网格效果图、构件风格等参数。
这些配置应与购买的触摸屏设备相匹配。
组态界面McgsPro组态软件主要由主控窗口、设备窗口、用户窗口、实时数据库和运行策略五个部分组成。
主控窗口:设置系统运行流程及特征参数等。
设备窗口:用于实现数据的采集,通过添加设备驱动和设置设备通道来与外部设备进行通信。
用户窗口:用于设计人机交互界面,包括添加各种图形元素(如按钮、标签、输入框等)和设置它们的属性。
实时数据库:用于管理变量,可以自定义变量或通过采集得到变量,并在变量与设备通道之间建立连接。
运行策略:用于编写脚本程序,以实现更复杂的控制逻辑和
2024/12/17 16:01:53 11.22MB
1
分数阶傅里叶变换作为一种线性变换,能够实现线性调频信号检测与分离。
而多项式相位信号在短时间内可以由线性调频信号提供良好的近似,故可以采用短时分数阶傅里叶变换实现多线性调频分量的检测与分离。
对每个短时信号的时频分析进行叠加组合,即得到多个多项式相位信号的时频分析检测。
计算机模拟仿真证明了此方法的有效性。
2024/12/17 3:48:54 322KB frft 参数估计
1
收集了2507个web服务的信息.QWS度量是使用作者开发的WebServiceBroker(WSB)框架进行的.与第一版相比主要有以下区别:(1)数量大大增加(365->2507)(2)不包含WsRFranking和classification参数
2024/12/17 0:02:13 273KB QWS dataset
1
LIBSVM是台湾大学林智仁(LinChih-Jen)教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包,他不但提供了编译好的可在Windows系列系统的执行文件,还提供了源代码,方便改进、修改以及在其它操作系统上应用;
该软件对SVM所涉及的参数调节相对比较少,提供了很多的默认参数,利用这些默认参数可以解决很多问题;
并提供了交互检验(CrossValidation)的功能。
该软件可以解决C-SVM、ν-SVM、ε-SVR和ν-SVR等问题,包括基于一对一算法的多类模式识别问题。
2024/12/16 20:02:02 856KB 支持向量机 SVM
1
Dobot型机器人运动学分析与仿真DH参数,等等,看完该文档,你就可以用任何一款控制器来实现dobot三轴机械臂的运动了
2024/12/16 19:15:39 2.04MB Dobot型 机器人 运动学 分析
1
本程序基于PeakPicking峰值法拾取结构振动响应中的自振频率。
1
包含各类题解及模拟试卷复习纲要〈〈模拟电子技术基础〉〉复习纲要第一章:常用半导体器件(1) 熟悉下列定义、概念及原理:自由电子与空穴,扩散与漂移,复合,空间电荷区、PN结、耗尽层,导电沟道,二极管的单向导电性,稳压管的稳压作用,晶体管与场效应管的放大作用及三个工作区域。
(2) 掌握二极管、稳压管、晶体管、场效应管的外特性、主要参数的物理意义。
掌握其应用。
(3) 了解选用器件的原则。
了解集成电路制造工艺。
第二章:基本放大电路(1) 掌握以下基本概念和定义:放大、静态工作点、饱和失真与截止失真、直流通路与交流通路、直流负载线与交流负载线、h参数等效模型、放大倍数、输入电阻和输出电阻、最大不失真输出电压。
掌握静态工作点稳定的必要性及稳定方法。
(2) 掌握组成放大电路的原则和各种基本放大电路的工作原理及特点,理解派生电路的特点,能够根据具体要求选择电路的类型。
(3) 掌握放大电路的分析方法,能够正确估算常用基本放大电路(共射、共集、共源为主)的静态工作点和动态参数Au、Ri、Ro,正确分析电路的输出波形和产生截止失真、饱和失真的原因。
第三章:多级放大电路(1) 掌握以下概念和定义:零点漂移与温度漂移,共模信号与共模放大倍数,差模信号与差模放大倍数,共模抑制比,互补输出电路。
(2) 掌握各种耦合方式的优缺点,能够正确估算多级放大电路的Au、Ri、Ro。
(3) 掌握差动放大器静态工作点和动态参数的计算方法。
(4) 掌握OCL电路。
第四章:集成运算放大电路(1) 熟悉集成运放的组成及各部分电路的特点、作用,正确理解其主要指标参数的物理意义、使用注意事项及其模型。
(2) 理解电流源电路的工作原理。
(3) 理解F007的电路原理。
第五章:放大电路的频率响应(1) 掌握以下概念:上限频率,下限频率,通频带,波特图,增益带宽积,幅值裕度,相位裕度,相位补偿。
(2) 能够计算放大电路中只含一个时间常数时的fH和fL,并能画出波特图。
(3) 了解多级放大器频率响应与组成它的各级电路频率响应间的关系。
(4) 了解集成运放中常用的相位补偿方法。
第六章:放大电路中的反馈(1) 能够正确的判断电路中是否引入了反馈以及反馈的性质,例如是直流反馈还是交流反馈,是正反馈还是负反馈,如是交流负反馈,是哪种组态的反馈等。
(2) 能够估算深度负反馈条件下电路的放大倍数。
(3) 掌握负反馈的四种组态对放大电路性能的影响,并能够根据需要在放大电路中引入合适的交流负反馈。
(4) 正确理解负反馈放大电路产生自激振荡的原因,能够利用环路增益的波特图判断电路的稳定性,并了解消除自激振荡的方法。
第七章:信号的运算和处理(1) 掌握比例、加减、积分、微分、对数和指数电路的工作原理及运算关系,能够运用“虚短”和“虚断”的概念分析各种运算电路输出电压与输入电压之间的运算关系,能够根据需要合理地选择电路。
(2) 正确理解LPF、HPF、BPF、BEF的工作原理和电路计算,并能够根据需要合理地选择电路。
(3) 了解干扰和躁声的来源及抑制方法。
第八章:波形的发生和信号的转换(1) 熟练掌握电路产生正弦波振荡的幅值平衡条件和相位平衡条件,RC桥式正弦波振荡电路的组成、起振条件和振荡频率。
正确理解变压器反馈式、电感反馈式、电容反馈式LC振荡电路和石英晶体振荡电路的工作原理,能够根据相位平衡条件正确判断电路是否可能产生正弦波。
正确理解它们的振荡频率与电路参数的关系。
(2) 正确理解由集成运放构成的矩形波、三角波和锯齿波发生电路的工作原理、波形分析和有关参数。
(3) 了解锁相环电路的方框图及工作原理。
第九章:功率放大电路(1) 掌握下列概念:晶体管的甲类、乙类和甲乙类工作状态,各类电路的优缺点,最大输出功率,转换效率。
(2) 正确理解功率放大电路的组成原则,掌握OTL、OCL的电路及原理,并理解其它类型功率放大电路的特点。
(3) 掌握功率放大电路的最大输出功率和效率的计算,掌握功放管的选择方法。
(4) 了解集成功率放大电路的工作原理和应用。
第十章:直流电源(1) 正确理解直流稳压电源的组成及各部分的作用。
(2) 能够分析整流电路的工作原理,估算输出电压及电流的平均值。
(3) 了解滤波电路的工作原理,能够估算电容滤波电路输出电压平均值。
(4) 掌握稳压管稳压电路的工作原理,能够正确进行限流电阻的估算。
(5) 正确理解串联型稳压电路的工作原理,能够估算输出电压的调节范围。
(6) 掌握集成稳压器的工作原理及使用方法。
(7) 理解开关型稳压电路的工作原理及特点。
2024/12/14 17:39:44 5.37MB 模电
1
SIEMENSPCIN传输软件使用说明(传送程序)1、在记事本中编写好程序(注意传输格式中的程序头),保存文件到文件夹中(如%26ldquo;D:\PROGRAM%26rdquo;)。
2、双击pcin.exe,进入程序界面。
3、移动到V24_INI,按回车,进入,可以设置传输参数。
按%26ldquo;Esc键%26rdquo;可退出。
4、移动到DATA_OUT,按回车,进入,在Filename:下输入文件所在的盘符、文件夹及文件名(必须有相应的文件扩展名,如图中所示)。
5、在数控机床中打开传输服务,数控机床先打开接收。
6、在电脑上,按回车,传输开始。
7、传输结束,按%26ldquo;Esc键%26rdquo;退出。
8、移动到EXIT,连续按回车退出程序。
2024/12/14 15:30:13 58KB 数控通讯软件
1
有关三菱IPM的外围接口电路以及驱动电路设计,此为毕业设计论文,详细的原理图,pcb图,技术文档,参数,芯片资料,相信会对你有所帮助
2024/12/14 5:06:37 2.33MB 三菱ipm 驱动电路
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡