ABplcRSlogix5000平安指令,Estop指令,LC光栅指令等
2023/3/13 8:09:41 21.4MB PLC Rockwell
1
mcr_with_bemg带有BEMG约束条件的pyMCR示例pyMCRをつかってLC-PDA(LC-DAD)クロマトピーククを分离するInterに,BEMGモデル关数数を入れるサンプルコードdo_mcr.py:MCR示例MCRを実行しますconstraint.py:BEMG约束make_dummy_lc_pda.py:为实验创建虚拟数据実験用のダミーデータを生成しますsim_chrom.py:色谱图仿真代码クロマト波形をシミュレーションしますisotherm.py:用于色谱图模仿的等温线クロマト波形シミュレーション用の吸着等温线注意:pyMCRのGaussConstraint风にConstraintでBEMG朝向を実装しているが,收束しない可以がある。
regressor部にて可以を実装するほうがよいかも。
(要确认)pyMCRは初期値が必要なのでFastICAで初期値
2021/6/24 23:09:55 412KB JupyterNotebook
1
三相LC型光伏并网逆变器仿真模型,经过电压和无功控制,实现就地消纳。
电压前馈控制,MPPT控制,VSC控制
2017/7/27 6:58:42 252KB 光伏
1
系统采用LC滤波,利用PR控制器对逆变器输出电压进行闭环控制。
PR控制器在逆变器控制中应用很多。
PR控制能够在谐振频率处提供无穷大的增益,因而对谐振频率处的电流信号实现无静差跟踪,并且易于实现,可无效降低系统成本。
2016/4/24 3:06:24 33KB Simulink
1
基于中等带宽滤波器设计中,通带宽度等相关因素进行分析,涉及晶体谐振器和变量器等相关参数设计。
采用中等带宽滤波器电路,通过对晶体谐振器的动态电感、电阻、Q值,变量器Q值和并联LC调谐回路温度特性进行分析,得到了宽通带、小通带波动、高阻带衰耗的晶体滤波器,并给出了实例阐述实现滤波器的方法。
通过测试结果与设计技术目标的对比,表明设计方案可以满足产品的技术要求。
1
LC-MS质谱软件XCALIBUR2.2短少foundation
2020/1/23 21:23:53 48.85MB xcalibur 质谱
1
提出了一种激光线宽测量新方法—系统参数不敏感型循环损耗补偿循环延迟自外差法(LC-RDSHI)。
通过对系统输出功率谱密度函数进行推导以及拍频功率谱仿真,分析讨论了该方法对系统参数不敏感的特性。
在此基础上,搭建相应实验装置,观测了系统参数对LC-RDSHI输出功率谱的影响,发现实验观测结果与理论分析相吻合。
此外,基于不同的实验系统参数,将本方法与传统的LC-RDSHI进行了线宽测量比较。
结果表明,系统参数不敏感型LC-RDSHI具有更高的线宽测量精度,并且测试过程愈加简单,从而具有更好的应用前景。
2021/5/10 21:55:33 7.87MB 激光器 线宽测量 循环延迟 功率谱
1
实验一三点式正弦波振荡器(模块1)一、实验目的1.掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
2.通过实验掌握晶体管静态工作点、反馈系数大小对振荡幅度的影响。
图1-1正弦波振荡器(4.5MHz)将开关S3拨上S4拨下,S1、S2全部断开,由晶体管Q3和C13、C20、C10、CCI、L2构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI可用来改变振荡频率。
振荡器的频率约为4.5MHz振荡电路反馈系数:F=振荡器输出通过耦合电容C3(10P)加到由Q2组成的射极跟随器的输入端,因C3容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。
射随器输出信号Q1调谐放大,再经变压器耦合从J1输出。
三、实验步骤1.根据图在实验板上找到振荡器各零件的位置并熟悉各元件的作用。
2.研究振荡器静态工作点对振荡幅度的影响。
3.将开关S3拨上S4拨下,S1、S2全拨下,构成LC振荡器。
4.改变上偏置电位器RA1,记下发射极电流,并用示波器测量对应点的振荡幅度VP-P(峰—峰值)记下对应峰峰值以及停振时的静态工作点电流值。
5.经测量,停振时的静态工作点电流值为2.23mA6.分析输出振荡电压和振荡管静态工作点的关系,按以上调整静态工作点的方法改变Ieq,并测量相应的,且把数据记入下表。
Ieq(mA)1.201.401.591.802.23Up-p(mV)304348384428停振7.晶体振荡器:将开关S4拨上S3拨下,S1、S2全部拨下,由Q3、C13、C20、晶体CRY1与C10构成晶体振荡器(皮尔斯振荡电路),在振荡频率上晶体等效为电感。
8.拍摄晶振正弦波如下:f=4.19MHz四、实验结果分析分析静态工作点、反馈系数F对振荡器起振条件和输出波形振幅的影响,并用所学理论加以分析。
答:晶体管的起振条件是约等于0.6V,使静态工作点处于此电压附近,并加入正反馈。
同时随着静态电流的增大,输出波形的幅度也增大。
增长到一定程度后,由于晶体管的非线性特性和电源电压的限制,输出波形振幅不再增长,振荡建立的过程结束,放大倍数的值下降至稳定。
|AF|=1,输出波形振幅维持在一个确定值,电路构成动态平衡。
五、实验仪器1.高频实验箱1台2.双踪示波器1台3.万用表1块
1
提出Mask相位法校准出厂标定波长在532nm的液晶空间光调制器(LC-SLM)在561nm处的相位调制特性曲线。
首先基于傅里叶光学模仿计算得出棋盘型二维相位光栅相位对比度与零级衍射光斑光强之间的对应关系,然后搭建实验光路测量计算机所发灰度图所对应的零级衍射光斑光强值。
根据前面两组结果最后得到相位延迟量与计算机灰度级之间的关系曲线,从而得到LC-SLM在561nm处的相位调制特性曲线。
用4λ的离焦对光斑进行调制,校准之后光斑光强分布与理论计算值之间的偏差为45.7,比校准之前的偏差110.4减少了64.7;
用10λ的倾斜对光斑进行调制,校准之后零级衍射光斑和二级衍射光斑的强度分别是校准前的32.3%和64.1%。
实验结果表明,使用Mask相位法对LC-SLM的相位调制特性曲线进行校准之后,LC-SLM的调制效果有了明显的改进。
2021/6/3 11:10:15 3.59MB 衍射 液晶空间 傅里叶光 相位调制
1
数字波束形成包括发射和接收两个部分。
数字是接收波束形成是关键技术,它通过使用顺序储存器FIFO或随机存取存储器双端口RAM替代模拟式波束形成器中的LC延时线来实现波束聚焦,即以数字延时补偿替代模拟延时的补偿。
数字延时不仅能实现精确延时补偿,实现所谓的逐点跟踪式动态聚焦,还能方便实现动态孔径、动态变迹控制,克服模拟式延时补偿存在的诸多固有缺点,通道数增加不受限制,是图像质量得以全面提高。
2020/10/11 4:07:58 2KB 波束形成
1
共 55 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡