本资源主要是智能控制,内容涉及模糊控制相关内容,神经网络相关内容等方面
2024/10/29 9:54:19 18.23MB fuzzy contro Neural Netwo
1
主要说明关于小车的模糊控制,详细介绍了电机的控制,有程序实例,也有说明,,
2024/10/25 13:10:02 2.6MB 模糊控制
1
现在对部分没接触过金融或者电商来说第三方也许比较模糊,本人也是从迷糊到一知半解过来的。
这份代码是第三方宝付的最新文档写出来的,导入进去修改把订单号改了就可以跑,有兴趣下载看看。
2024/10/24 0:46:09 1.59MB 第三方接口
1
模糊pid仿真源文件,siminlink仿真,mdl文件,,,,,,,,,,,,,,,,,,,,,,,,,
2024/10/22 21:14:08 48KB 模糊PID仿真
1
精通MATLAB/Simulink系统仿真2015全书主要分为三大部分,共15章。
第一部分主要介绍MATLAB基础知识、Simulink仿真入门、Simulink模型的建立与仿真、Simulink常用命令库分析等;
第二部分主要为基于Simulink的S-Function建模、控制系统Simulink仿真、基于PID的控制系统仿真等;
第三部分则涉及Simulink高级应用,包括模糊逻辑控制仿真、电力系统仿真、通信系统仿真、神经网络控制仿真、滑模控制、车辆系统仿真、群智能算法控制系统仿真等此资源为该书的书上例子代码(全)
2024/10/22 9:49:48 2.29MB MATLAB Simulink 源代码
1
墨卡托脚本是小的Javascript程序,可以更改GoogleMeet的相机供稿。
MercatorStudioforGoogleMeet通过可调的曝光,模糊,晕影等来改变您在GoogleMeet上的外观!墨卡托矩阵-GoogleMeetMatrixRain您甚至都看不到代码。
您所看到的只是您自己。
1
模糊pid和模糊控制模糊pid和模糊控制的智能车编程实现的智能车编程实现
1
驾驶行为详细分析分析:车辆跟驰模拟中的驾驶行为与模糊逻辑控制
2024/10/16 9:13:56 301KB 驾驶行为分析
1
从用户的实际需求出发,分析了聚类系统的使用者可能对系统提出的功能要求,提出了一种基于加权Eucfid距离的模糊C聚类分析算法。
在该算法中,权值是由用户或领域的专家直接指定的,加在不同特征指标上的权值体现了用户对各个特征指标重视程度的差别。
与传统的模糊C聚类分析相比,该算法增加了聚类的灵活性,能够产生令用户更加满意的聚类结果
2024/10/15 22:37:56 167KB 模糊数学 聚类分析 加权 Euclid距离
1
1本课题研究的意义近来随着计算机的快速发展,各种各样的电脑游戏层出不穷,使得我们能有更多的娱乐项目,而棋类游戏能起到锻炼人的思维和修身养性的作用,而且棋类游戏水平颇高,大有与人脑分庭抗礼之势。
其中战胜过国际象棋世界冠军-卡斯帕罗夫的“深蓝”便是最具说服力的代表;
其它像围棋的“手淡”、象棋的“将族”等也以其优秀的人工智能深受棋迷喜爱。
越来越多的具有智能的机器进入了人类的生活,人工智能的重要性如今显而易见。
自己对人工智能比较感兴趣,而五子棋游戏程序的开发实现这个课题,正好提供给我这样一个研究的机会,通过对人工智能中博弈方面的研究(人机对弈),让我在简单的人机对弈全局设计,以及具体到相关算法上有了深入的了解。
人工智能属于计算机科学的领域,它以计算机技术为基础,近几十年来,它的理论和技术已经日益成熟,应用领域也正在不断扩大,显示出强大的生命力。
人工智能大致可以分成几个学科,它们每一个都是独特的,但是它们常常又互相结合起来完成设计任务,这时,这些学科之间的差别就变的很模糊。
人工智能在专家系统,自然语言理解,自动定理证明,自动程序设计,人工智能在机器人学、模式识别、物景分析、数据库的智能检索、机器下棋(实质上是博弈论问题)和家用电器智能化等领域都有广泛的应用。
而这个课题就是和人工智能中的博弈论领域紧密相关的。
这个题目核心是人工智能和Socekt编程,。
并且人工智能中的博弈部分,由于采用了大量的搜索算法,其中很多被利用到各方面。
它的概念、方法和技术,正在各行各业广泛渗透。
智能已经成为当今各种新产品、新装备的发展方向。
所以,趁着这个机会,对人工智能中比较容易实现的人机博弈进行了解研究学习,也是很实用且很有必要的。
2024/10/15 19:21:56 1.1MB 五子棋游戏 Java 源代码 论文
1
共 757 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡